小学几何与图形心得体会小学学过的几何图形(五篇)学习中的快乐,产生于对学习内容的兴趣和深入。世上所有的人都是喜欢学习的,只是学习的方法和内容不同而已。那么你知道心得体会如何写吗?以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。有关小学几何与图形心得体会一1.使学生了解有理数加法的意义。2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。(在教学中适当渗透分类讨论思想)教学重点和难点:重点:理解有理数加法法则,运用有理数加法法则进行有理数加法运算。难点:理解有理数加法法则,尤其是异号两数相加的情形。教学工具和方法:工具:应用投影仪,投影片。方法:分层次教学,讲授、练习相结合。(采取合作探究式教学方法,让学生在合作学习中学习知识,掌握方法。)教学过程:一、复习引入:1.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?2.问题:[一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。(大部分同学都会用小学学过的的知识来完成。先给予肯定,鼓励同学们对小学知识的掌握程度,再鼓励同学们想想还有没有其他情况)[来源:学#科#网]二、讲授新课:1.发现、总结(分类):我们必须把问题说得明确些,并规定向东为正,向西为负。(同号两数相加法则)(1)若两次都是向东走,很明显,一共向东走了50米,写成算式就是:(+20)+(+30)=+50,即这位同学位于原来位置的东方50米处。这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是:(―20)+(―30)=―50。(师生共同归纳同号两数相加法则:[来源:z+··+]同号两数相加,取相同的符号,并把绝对值相加)(异号两数相加法则)(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=()。即这位同学位于原来位置的()方()米处。后两种情形中,两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不妨仍可看作运动的方向和路程):你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(―3)=();(+3)+(―10)=();(―5)+(+7)=();(―6)+2=()。再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=()。(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+0=()。我们不难得出它们的结果。(师生共同归纳异号两数相加法则:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)(互为相反数的两数相加为零问题:会不会出现和为0的情况?(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=()。师生共同归纳法则3:互为相反数的两数相加得0)问题:你能有法则来解释法则3吗?学生回答:可以用异号两数相加的法则)((6)第一次向西走了30米,第二次没走.写成算式是:(―30)+0=()。我们不难得出它们的结果。一般地,一个数同0相加,仍得这个数)2.概括:综合以上情形,我们得到有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。3.例题:例:计算:(1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。解:(1)解原式=―(11―2)=―9;(2)解原式=+(20+12)=+32=32...