电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

圆的心得体会和感想 对圆的感受和认识(四篇)

圆的心得体会和感想 对圆的感受和认识(四篇)_第1页
1/13
圆的心得体会和感想 对圆的感受和认识(四篇)_第2页
2/13
圆的心得体会和感想 对圆的感受和认识(四篇)_第3页
3/13
圆的心得体会和感想对圆的感受和认识(四篇)在平日里,心中难免会有一些新的想法,往往会写一篇心得体会,从而不断地丰富我们的思想。那么心得体会该怎么写?想必这让大家都很苦恼吧。下面我给大家整理了一些心得体会范文,希望能够帮助到大家。2022圆的心得体会和感想一1、圆的定义在一个个平面内,线段oa绕它固定的一个端点o旋转一周,另一个端点a随之旋转所形成的图形叫做圆,固定的端点o叫做圆心,线段oa叫做半径。2、直线圆的与置位关系1.线直与圆有唯公一共时,点做直叫与圆线切2.三角的外形圆接的圆叫做三心形角外心3.弦切角于所等夹弧所对的的圆心角4.三角的内形圆切的圆叫做三心形角内心5.垂于直径半直线必为圆的的切线6.过径半外的点并且垂直端于半的径直线是圆切线7.垂于直径半直线是圆的的切线8.圆切线垂的直过切于点半径3、圆的几何表示以点o为圆心的圆记作“⊙o”,读作“圆o”<>垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧<>1、弦连接圆上任意两点的线段叫做弦。(如图中的ab)2、直径经过圆心的弦叫做直径。(如途中的cd)直径等于半径的2倍。3、半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。4、弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“⌒”表示,以a,b为端点的弧记作“”,读作“圆弧ab”或“弧ab”。大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)<>1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。<>1、圆心角顶点在圆心的角叫做圆心角。2、弦心距从圆心到弦的距离叫做弦心距。3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。<>1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。<>设⊙o的半径是r,点p到圆心o的距离为d,则有:dd=r点p在⊙o上;dr点p在⊙o外。<>1、过三点的圆不在同一直线上的三个点确定一个圆。2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。<>先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。<>直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果⊙o的半径为r,圆心o到直线l的距离为d,那么:直线l与⊙o相交d直线l与⊙o相切d=r;直线l与⊙o相离dr;<>1、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。2、切线的性质定理圆的切线垂直于经过切点的半径。<>1、切线长在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。2、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

圆的心得体会和感想 对圆的感受和认识(四篇)

确认删除?