2023-2024学年甘肃省白银市靖远县数学七年级第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知数轴上的点E、F、G、H表示的数分别是、、、,那么其中离原点最近的点是()A.点EB.点FC.点GD.点H)2.下列各式,去括号添括号正确的是(A.B.C.D.3.若与是同类项,则的值为()A.0B.4C.5D.64.下列变型,错误的是()A.若,则B.若,则C.由,得D.由,得5.如图,表中给出的是某月的月历,任意选取“”型框中的个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这个数的和不可能的是()A.B.C.D.6.如果-a的绝对值等于a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤07.若()是方程的解,则的值为A.B.C.D.8.下列说法:①一个有理数不是整数就是分数;②有理数是正数和小数的统称;③到原点距离相等的点所示的数相等;④相反数、绝对值都等于它本身的数只有0;⑤数轴上的点离原点越远,表示的数越大;⑥有最小的正整数但没有最小的正有理数.其中正确的个数有()A.2个B.3个C.4个D.5个9.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,这个平面图形是()A.B.C.D.10.如图,已知A、B、C、D、E五点在同一直线上,点D是线段AB的中点,点E是线段BC的中点,若线段AC=12,则线段DE等于()A.10B.8C.6D.4二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,则∠AOB的度数是_____.12.圆柱底面半径是,高是,则此圆柱的侧面积是______.13.在数轴上,到-8这个点的距离是11的点所表示的数是______.14.若∠1=35°22′,则∠1的余角是______.15.如图,已知正方形,点是线段延长线上一点,联结,其中.若将绕着点逆时针旋转使得与第一次重合时,点落在点(图中未画出).求:在此过程中,(1)旋转的角度等于______________.(2)线段扫过的平面部分的面积为__________(结果保留)(3)联结,则的面积为____________.16.比较大小:52º______52.52º三、解下列各题(本大题共8小题,共72分)17.(8分)已知:直线AB与直线PQ交于点E,直线CD与直线PQ交于点F,∠PEB+∠QFD=180°.(1)如图1,求证:AB∥CD;(2)如图2,点G为直线PQ上一点,过点G作射线GH∥AB,在∠EFD内过点F作射线FM,∠FGH内过点G作射线GN,∠MFD=∠NGH,求证:FM∥GN;(3)如图3,在(2)的条件下,点R为射线FM上一点,点S为射线GN上一点,分别连接RG、RS、RE,射线RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度数.18.(8分)解方程:(1)2(x﹣1)=x﹣3(2)19.(8分)解方程:20.(8分)已知直角三角板和直角三角板,,,.(1)如图1,将顶点和顶点重合,保持三角板不动,将三角板绕点旋转,当平分时,求的度数;(2)在(1)的条件下,继续旋转三角板,猜想与有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点和顶点重合,保持三角板不动,将三角板绕点旋转.当落在内部时,直接写出与之间的数量关系.21.(8分)列方程解应用题:某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售台,第二季度甲种冰箱的销量比第一季度增加,乙种冰箱的销量比第一季度增加,且两种冰箱的总销量达到台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为元,每台乙种冰箱的利润为元,则该商场第二季度销售冰箱的总利润是多少元?22.(10分)如图所示的几何体是由几个相同的小正方形排成两行组成的.(1)填空:这个几何体由_______个小正方体组成.(2)画出该几何体的三个视图.23.(10分)...