2023-2024学年七下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若,则下列不等式不一定正确的是()A.B.C.D.2.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()B.先左转80°,再右转80°A.先右转80°,再左转100°C.先左转80°,再左转100°D.先右转80°,再右转80°3.如图,在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积为16,则△BEF的面积是()A.2B.4C.6D.84.下列式子直接能用完全平方公式进行因式分解的是().A.B.C.D.5.如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A.SSSB.SASC.ASAD.AAS6.在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3B.2C.0D.﹣4,例如:7.对于有理数、,定义的含义为:当时,.已知,,且和为两个连续正整数,则的立方根为()A.B.C.D.8.如图,点E在AC的延长线上,下列条件中:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D+∠ABD=180º,能判断AB∥CD的是()A.①③④B.①②③C.①②④D.②③④9.要使成立,则a的取值范围是()A.a≤4B.a≤-4C.a≥4D.一切实数10.若是整数),则A.9B.8C.7D.6二、填空题(本大题共有6小题,每小题3分,共18分)11.分解因式:4x﹣x3=_____.12.某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为.13.因式分解:_______.14.如图,平分,于点,,,则的面积为____.15.七年级(1)班一次数学单元测试,全班所有学生成绩的频数直方图如图所示(满分100分,成绩取整数),则成绩在90.5~95.5这一分数段的频率是_____.16.方程的解为__________.三、解下列各题(本大题共8小题,共72分)17.(8分)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多元,用元购得的排球数量与用元购得的足球数量相等.⑴排球和足球的单价各是多少元?⑵若恰好用去元,有哪几种购买方案?18.(8分)如图,MN,EF是两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,则∠1=∠1.(1)用尺规作图作出镜面BC经镜面EF反射后的反射光线CD;(1)试判断AB与CD的位置关系;(3)你是如何思考的?19.(8分)每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.20.(8分)若方程组的解满足x<1且y>1,求k的取值范围.21.(8分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将绕点C顺时针方向旋转得到,连结EF,若,求的度数.22.(10分)某餐厅新开业,为了吸引顾客,推出“模球有礼”优惠活动,餐厅在一个不透明的纸箱中装入除颜色外完全相同的小球共个,其中红色球个、黄色球个、蓝色球个,剩余为绿色。用餐结束后,顾客在结账前有一次模奖机会,可以从纸箱中任意摸出一一球(记下颜色后放回),根据摸到的小球颜色决定这一次用餐可享受的优息(如下表所示).求某顾客通过摸球获得餐费打折优惠的概率。23.(10分)计...