2023-2024学年七下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,为估计池塘岸边的距离,小方在池塘的一侧选取一点,测得米,间的距离不可能是()A.25米B.15米C.10米D.6米2.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300B.5×100+5x≥300C.100+5x>300D.100+5x≥3003.如图是5×5的正方形网络,以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个4.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A.B.C.D.5.如图,将△ABC绕点C按顺时针方向旋转90°得到△EDC.若点A、D、E在同一条直线上,,则ADC的大小为()A.60°B.5°C.70°D.75°6.点A(﹣3,﹣2)向上平移2个单位,再向左平移2个单位到点B,则点B的坐标为()A.(1,0)B.(﹣1,﹣4)C.(﹣1,0)D.(﹣5,0)7.已知是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A.﹣1B.1C.﹣5D.58.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙D.9.下列各组数值是二元一次方程2x﹣y=4的解的是()D.b>c>aD.A.B.C.10.已知a=96,b=314,c=275,则a、b、c的大小关系是()A.a>b>cB.a>c>bC.c>b>a11.下列分式是最简分式的是()A.B.C.12.已知:表示不超过的最大整数,例:,令关于的函数(是正整数),例:=1,则下列结论错误的是()A.B.C.D.或1二、填空题(每题4分,满分20分,将答案填在答题纸上)13.在平面直角坐标系中,对于点,我们把点叫做点的伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点.若点的坐标为,则的坐标为________.14.某人将一枚均匀的正方体骰子随意抛了10次,出现的点数分别是6,3,1,3,2,4,3,5,3,4,在这10次中,出现频率最高的点数是_____,“4”出现的频数是_____.15.如果方程组的解是方程的一个解,则的值为____________.16.数学中,判断一个命题是假命题,只需举出一个_____.17.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点.若△ABC的面积为m,则△BEF的面积为_____.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)配餐公司为某学校提供A、B、C三类午餐供师生选择,三类午餐每份的价格分别是:A餐6元,B餐8元,C餐12元.为做好下阶段的营销工作,配餐公司根据该校上周A、B、C三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题:(1)配餐公司上周在该校销售B餐每份的利润大约是元;(2)请你计算配餐公司上周在该校销售午餐约盈利多少元?19.(5分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价150元销售,最后剩下50件按八折优惠卖出,求两批衬衫全部售完后利润是多少元?20.(8分)某学校...