2023-2024学年七下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列图形都是由圆和几个黑色围棋子按一定规律组成,图①中有4个黑色棋子,图②中有7个黑色棋子,图③中有10个黑色棋子,…,依次规律,图⑨中黑色棋子的个数是()A.23B.25C.26D.282.如图,线段经过平移得到线段,其中点,的对应点分别为点,,这四个点都在格点上.若线段上有一个点,,则点在上的对应点的坐标为A.B.C.D.3.分解因式x3+4x的结果是()B.x(x+2)(x﹣2)A.x(x2+4)D.x(x﹣2)2C.x(x+2)24.下列各对单项式中,是同类项的是()A.-x3y2与3x3y2B.-x与-yC.3与3aD.3ab2与a2b5.以下列各组线段为边作三角形,能构成直角三角形的是A.2,3,4B.4,4,6C.6,8,10D.7,12,136.若2ab=a﹣b≠0,则分式与下面选项相等的是()A.B.﹣2C.4D.﹣47.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意所列方程组正确的是()A.B.C.D.8.已知,,是的三条边长,则的值是()A.正数B.负数C.0D.无法确定9.为应对越来越复杂的交通状况,某城市对其道路进行拓宽改造,工程队在工作了一段时间后,因雨被迫停工几天,随后工程队加快了施工进度,按时完成了拓宽改造任务.下面能反映该工程尚未改造的道路(米)与时间(天)的关系的大致图象是()A.B.C.D.10.下列各点中,在第二象限的是()A.(5,2).B.(-3,0).C.(-4,2).D.(-3,-1).二、填空题(本大题共有6小题,每小题3分,共18分)11.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为.12.计算:+﹣2﹣(﹣)=___.13.对于下列四个条件:①∠A+∠B=∠C;②∠A:∠B:∠C=3:4:5,③∠A=90°-∠B;④∠A=∠B=0.5∠C,能确定ΔABC是直角三角形的条件有________.(填序号即可)14.如图,半径为的圆从表示的点开始沿着数轴向左滚动一周,圆上的点与表示的点重合,滚动一周后到达点,点表示的数是______.15.如图,长方形ABCD的周长为12,分别以BC和CD为边向外作两个正方形,且这两个正方形的面积和为20,则长方形ABCD的面积是______.16.不等式组的非负整数解有_____个.三、解下列各题(本大题共8小题,共72分)17.(8分)如图,已知:AB∥CD,∠1=∠2,∠3=∠1.求证:(1)∠1=∠DAC;(2)AD∥BE.18.(8分)阅读下列材料,完成相应的任务:全等四边形根据全等图形的定义可知:四条边分别相等,四个角也分别相等的两个四边形全等.在“探索三角形全等的条件”时,我们把两个三角形中“一条边相等”或“一个角相等”称为一个条件.智慧小组的同学类比“探索三角形全等条件”的方法,探索“四边形全等的条件”,进行了如下思考:如图1,四边形ABCD和四边形A'B'C'D'中,连接对角线AC,A'C',这样两个四边形全等的问题就转化为“△ABC≌△A'B'C'”与“△ACD≌△A'C'D'”的问题.若先给定“△ABC≌△A'B'C'”的条件,只要再增加2个条件使“△ACD≌△A'C'D'”即可推出两个四边形中“四条边分别相等,四个角也分别相等”,从而说明两个四边形全等.按照智慧小组的思路,小明对图1中的四边形ABCD和四边形A'B'C'D'先给出如下条件:AB=A'B',∠B=∠B',BC=B'C',小亮在此基础上又给出“AD=A'D',CD=C'D'”两个条件,他们认为满足这五个条件能得到“四边形ABCD≌四边形A'B'C'D'”.(1)请根据小明和小亮给出的条件,说明“四边形ABCD≌四边形A'B'C'D'”的理由;(2)请从下面A,B两题中任选一题作答,我选择______题.A.在材料中“小明所给条件”的基础上,小颖又给出两个条件“AD=A'D',∠BCD=∠B'C'D'”,满足这五个条件_______(填“能”或“不能”)得到“四边形ABCD≌四边形A'B'C'D'”.B.在材料中“小明所给条件”的基础上,再添加两个关于原四边形的条件...