2023-2024学年七下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若,则x,y的值为()A.B.C.D.2.如图,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的3条线段首尾相接组成一个三角形,最少需要()A.5步B.6步C.7步D.8步3.下列说法正确的是()A.无限循环小数是无理数B.任何一个数的平方根有两个,它们互为相反数C.任何一个有理数都可以表示为分数的形式D.数轴上每一个点都可以表示唯一的一个有理数4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.80°B.100°C.110°D.120°5.已知是二元一次方程的一个解,那么的值为()A.2B.-2C.4D.-46.当x=,y═时,代数式(x+y)2﹣(x﹣y)2的值是()A.﹣4B.﹣2C.2D.47.如图,小明在操场上匀速散步,某一段时间内先从点出发到点,再从点沿半圆弧到点,最后从点回到点,能近似刻画小明到出发点的距离与时间之间的关系的图像是()A.B.C.D.8.下列运算正确的是A.(ab)2=a2b2B.a2+a4=a6C.(a2)3=a5D.a2•a3=a69.一个正数的两个不同平方根分别是和,则这个正数是()A.1B.4C.9D.1610.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,如果垂足为,,,那么点到的距离为_______.12.已知:如图,在中,,,的垂直平分线交于点,交于点,若,则________.13.已知x=3是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x-4)+b>0的解集是______.14.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于_____.15.已知s2+t2=15,st=3,则s﹣t=_____.16.已知关于x的不等式组的解集是x>2,则a的取值范围是______.三、解下列各题(本大题共8小题,共72分)17.(8分)如图,是经过某种变换得到的图形,点与点,点与点,点与点分别是对应点.(1)已知点,点,分别写出点与点,点与点的坐标,并说出对应点的坐标有哪些特征;(2)若点与点也是具有(1)中特征的对应点,求,的值.18.(8分)解方程:.19.(8分)(1)解不等式组:(2)解方程组:20.(8分)在等边△ABC中,点P,Q是BC边上的两个动点(不与点B、C重合),且AP=AQ.(1)如图1,已知,∠BAP=20°,求∠AQB的度数;(2)点Q关于直线AC的对称点为M,分别联结AM、PM;①当点P分别在点Q左侧和右侧时,依据题意将图2、图3补全(不写画法);②小明提出这样的猜想:点P、Q在运动的过程中,始终有PA=PM.经过小红验证,这个猜想是正确的,请你在①的点P、Q的两种位置关系中选择一种说明理由.21.(8分)某商场计划购进A、B两种商品,若购进A种商品2件和B种商品1件需45元;若购进A种商品3件和B种商品2件需70元.(1)A、B两种商品每件的进价分别是多少元?(2)若购进A、B两种商品共100件,总费用不超过1000元,最多能购进A种商品多少件?22.(10分)解方程组:;.23.(10分)杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=(a+b)(a2+2ab+b2)=a3+3a2b+3ab2+b3(a+b)4=(a+b)(a3+3a2b+3ab2+b3)=a4+4a3b+6a2b2+4ab3+b4“杨辉三角”里面蕴藏了许多的规律(1)找出其中各项字母之间的规律以及各项系数之间的规律各一条;(2)直接写出(a+b)6展开后...