2023-2024学年云南省楚雄州—重点名校中考四模数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10πC.11πD.12π2.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<13.如果t>0,那么a+t与a的大小关系是()A.a+t>aB.a+t<aC.a+t≥aD.不能确定4.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是A.B.C.D.5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个6.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为()A.18元B.36元C.54元D.72元7.如图,在中,.点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结.给出以下四个结论:①;②点是的中点;③;④,其中正确的个数是()A.4B.3C.2D.18.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是()A.①③④B.②④⑤C.①③⑤D.①③④⑤9.的化简结果为A.3B.C.D.910.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有()A.(x﹣20)(50﹣)=10890B.x(50﹣)﹣50×20=10890C.(180+x﹣20)(50﹣)=10890D.(x+180)(50﹣)﹣50×20=10890二、填空题(本大题共6个小题,每小题3分,共18分)11.如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是__________.12.如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为__________.13.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).14.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是则劣弧15.如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,AB的长为.(结果保留)16.函数的自变量的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:(x﹣3)(x﹣2)﹣4=1.18.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明.19.(8分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=,求AC的长.20.(8分)直角三角形ABC中,,D是斜边BC上一点,且,过点C作,交AD的延长线于点E,交AB延长线于点F.求证:;若,,过点B作于点G,连接依题意补全图形,并求四边形ABGD的面积.21.(8分)2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.22.(10分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次,如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.(1)请您列表或画树状图列举出所有可能出现的结果;(2)请你判断这个游戏对他们是否公平并说明理由.23.(12...