2023-2024学年江苏省镇江市丹徒区、句容区达标名校中考一模数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA相似,可以添加一个条件.下列添加的条件中错误的是()A.∠ACD=∠DABB.AD=DEC.AD·AB=CD·BDD.AD2=BD·CD2.下列运算正确的是()B.﹣3a2•4a3=﹣12a5A.(﹣2a)3=﹣6a3D.2a3﹣a2=2aC.﹣3a(2﹣a)=6a﹣3a23.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A.3:1B.4:1C.5:2D.7:2D.4.下列美丽的壮锦图案是中心对称图形的是()A.B.C.5.如图,已知,,则的度数为()A.B.C.D.6.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为()A.5B.7C.8D.107.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.B.1C.D.8.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°9.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的()A.H或NB.G或HC.M或ND.G或M10.若分式在实数范围内有意义,则实数的取值范围是()A.B.C.D.二、填空题(共7小题,每小题3分,满分21分)11.分解因式:x2y﹣2xy2+y3=_____.12.规定:,如:,若,则=__.13.化简__________.14.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是_____(填序号)15.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_____cm.16.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.17.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.三、解答题(共7小题,满分69分)18.(10分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.19.(5分)下面是一位同学的一道作图题:已知线段a、b、c(如图),求作线段x,使他的作法如下:,.(1)以点O为端点画射线,.(2)在上依次截取(3)在上截取.(4)联结,过点B作,交于点D.所以:线段________就是所求的线段x.①试将结论补完整②这位同学作图的依据是________③如果,,,试用向量表示向量.20.(8分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?21.(10分)如图1,抛物线y1=ax1﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1.(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有...