天津市东丽市级名校2023-2024学年中考二模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.不等式﹣x+1>3的解集是()A.x<﹣4B.x>﹣4C.x>4D.x<42.如图,半径为1的圆O1与半径为3的圆O2相内切,如果半径为2的圆与圆O1和圆O2都相切,那么这样的圆的个数是()A.1B.2C.3D.43.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)25262728天数1123则这组数据的中位数与众数分别是()A.27,28B.27.5,28C.28,27D.26.5,274.已知二次函数的图象如图所示,则下列说法正确的是()A.<0B.<0C.<0D.<05.如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<-2,那么符合条件的所有整数a的积是()A.-3B.0C.3D.96.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cmB.3cmC.4cmD.4cmD.7.如图图形中,可以看作中心对称图形的是()D.A.B.C.8.下列函数中,y随着x的增大而减小的是()A.y=3xB.y=﹣3xC.9.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张()A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定10.下列算式中,结果等于a5的是()A.a2+a3B.a2•a3C.a5÷aD.(a2)3二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_____.12.计算:()﹣1﹣(5﹣π)0=_____.13.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=.14.如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.15.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.16.已知a+=3,则的值是_____.三、解答题(共8题,共72分)17.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?18.(8分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)点E在抛物线的对称轴上,且,求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,,求点Q的坐标.ABCD中,点E是AB边的中点,DE与CB的延长线交于点F19.(8分)如图,在(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE,试判断CE和DF的位置关系,并说明理由.20.(8分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.(1)若,DC=4,求AB的长;(2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.21.(8分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?22.(10分)先化简,再求值:(1﹣)÷,其中x是不等式组的整数解23.(12分...