山东省临沂市经济技术开发区市级名校2023-2024学年中考试题猜想数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()A.个B.个C.个D.个2.关于的方程有实数根,则整数的最大值是()A.6B.7C.8D.93.若分式有意义,则的取值范围是()A.;B.;C.;D..4.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是()A.B.C.D.5.方程x2﹣4x+5=0根的情况是()B.有两个相等的实数根A.有两个不相等的实数根C.有一个实数根D.没有实数根6.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是()A.0≤x0≤1B.0<x0<1且x0≠C.x0<0或x0>1D.0<x0<17.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为()A.B.C.D.8.在下列各平面图形中,是圆锥的表面展开图的是()A.B.C.D.9.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为()A.4B.3C.D.10.如果,那么代数式的值为()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分)11.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.12.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为_____.13.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.14.在中,::1:2:3,于点D,若,则______15.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=度.16.函数y=中自变量x的取值范围是___________.三、解答题(共8题,共72分)(为常数).17.(8分)已知,抛物线(1)抛物线的顶点坐标为(,)(用含的代数式表示);(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;(3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是.18.(8分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手次:;若参加聚会的人数为5,则共握手次;若参加聚会的人数为n(n为正整数),则共握手次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?19.(8分)求抛物线y=x2+x﹣2与x轴的交点坐标.20.(8分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.(1)求证:∠CBE=∠F;(2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.21.(8分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=,求⊙O的半径.22.(10分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若△PAC为直角三角形,直接写出此时点P的坐标.23.(12分)如图,已知△ABC中,AB=AC=5,cosA=.求底边BC的长.24.先化简再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】求...