广东省湛江市徐闻县2024年中考数学适应性模拟试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5B.4C.3D.22.如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是A.5:2B.3:2C.3:1D.2:13.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.4.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是()A.7海里/时B.7海里/时C.7海里/时D.28海里/时5.如图,,,则的大小是A.B.C.D.6.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(3,3)B.(4,3)C.(﹣1,3)D.(3,4)7.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a108.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()A.B.C.D.9.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为()A.B.C.D.±10.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()A.m<﹣1B.m>1C.m>﹣1D.m<1二、填空题(共7小题,每小题3分,满分21分)11.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.12.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.13.与是位似图形,且对应面积比为4:9,则与的位似比为______.14.若a+b=5,ab=3,则a2+b2=_____.15.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.16.在正方形中,,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,,则和之间的关系是__________(用含的代数式表示).,点D,E分别是边BC,AC上的动点,则DA+DE的最小17.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6值为_____.三、解答题(共7小题,满分69分)+1)0+2•sin60°.18.(10分)计算:÷+8×2﹣1﹣(19.(5分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.20.(8分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.21.(10分)已知函数的图象与函数的图象交于点.(1)若,求的值和点P的坐标;(2)当m≤n时,结合函数图象,直接写出实数的取值范围.22.(10分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)...