揭阳市榕城区重点达标名校2024年中考数学考试模拟冲刺卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为()A.7.49×107B.74.9×106C.7.49×106D.0.749×1072.矩形具有而平行四边形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.对边相等3.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有()A.1个B.3个C.4个D.5个4.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a105.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A.aB.bC.D.6.下列运算正确的是()A.(﹣2a)3=﹣6a3B.﹣3a2•4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2D.2a3﹣a2=2a7.如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为().A.3B.C.D.8.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A.B.C.D.9.的相反数是()A.B.-C.D.-10.已知关于x的不等式ax<b的解为x>-2,则下列关于x的不等式中,解为x<2的是()A.ax+2<-b+2B.–ax-1<b-1C.ax>bD.二、填空题(本大题共6个小题,每小题3分,共18分)11.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.12.如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是______.13.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为14.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.15.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.16.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.三、解答题(共8题,共72分)17.(8分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.求证:FC∥AB.18.(8分)解不等式组,并把它的解集表示在数轴上.19.(8分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_____.20.(8分)如图,二次函数的图象与x轴交于和两点,与y轴交于点C,一次函数的图象过点A、C.(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量x的取值范围.21.(8分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.22.(10分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图...