浙江省台州市坦头中学2024年中考数学对点突破模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.(a﹣3)2=a2﹣9B.()﹣1=2C.x+y=xyD.x6÷x2=x32.已知正比例函数的图象经过点,则此正比例函数的关系式为().A.B.C.D.3.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A.10B.12C.20D.244.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16B.14C.12D.65.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2106.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4B.﹣4C.2D.±27.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为()A.B.C.D.8.下列说法正确的是()A.2a2b与–2b2a的和为0B.的系数是,次数是4次C.2x2y–3y2–1是3次3项式D.x2y3与–是同类项9.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是()A.﹣4<P<0B.﹣4<P<﹣2C.﹣2<P<0D.﹣1<P<010.如图,是的直径,弦,,,则阴影部分的面积为()A.2πB.πC.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.数据:2,5,4,2,2的中位数是_____,众数是_____,方差是_____.12.将绕点逆时针旋转到使、、在同一直线上,若,,,则图中阴影部分面积为________.13.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.14.如果一个三角形两边为3cm,7cm,且第三边为奇数,则三角形的周长是_________.15.已知xy=3,那么的值为______.16.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.三、解答题(共8题,共72分)17.(8分)如图,△ABC中,CD是边AB上的高,且.求证:△ACD∽△CBD;求∠ACB的大小.18.(8分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化简:÷(1﹣)19.(8分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.20.(8分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).(1)求该抛物线的函数表达式.(2)求直线AB关于x轴对称的直线的函数表达式.(3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM<PN时,求点P的横坐标的取值范围.21.(8分)反比例函数y=(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).求反比例函数的解析式;若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.22.(10分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.23.(12分)解不等式,并把解集在数轴上表示出来.24.如图,...