湖北省武汉市硚口区市级名校2024年中考三模数学试题注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为B.67.5×102C.6.75×104D.6.75×105A.675×1022.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,)C.(2018,)D.(2018,0)3.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为()A.0.8×1011B.8×1010C.80×109D.800×1084.下列运算正确的是()B.a+a2=a3A.5a+2b=5(a+b)C.2a3•3a2=6a5D.(a3)2=a55.在3,0,-2,-四个数中,最小的数是()A.3B.0C.-2D.-6.某种超薄气球表面的厚度约为,这个数用科学记数法表示为()A.B.C.D.7.下列基本几何体中,三视图都是相同图形的是()A.B.C.D.8.方程的解为()A.x=49.如图,在B.x=﹣3C.x=6D.此方程无解相切,点分别是边中,,以边的中点为圆心,作半圆与和半圆上的动点,连接,则长的最大值与最小值的和是()A.B.C.D.10.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率二、填空题(本大题共6个小题,每小题3分,共18分)的中点,D、E分别是OA、OB的中点,则图中阴11.如图,在圆心角为90°的扇形OAB中,半径OA=1cm,C为影部分的面积为_____cm1.12.已知(x-ay)(x+ay),那么a=_______13.分式方程的解为x=_____.14.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于_____15.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______人.16.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.三、解答题(共8题,共72分)的对角线,,(1)请用尺规作图法,作的垂直平分线,17.(8分)如图,是菱形垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数.18.(8分)如图所示,直线y=﹣2x+b与反比例函数y=交于点A、B,与x轴交于点C.(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直线AB的解析式.19.(8分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).20.(8分)计算:﹣(﹣2)2+﹣3﹣20180×21.(8分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;(2)若m=90时,求当...