陕西省榆林市第一中学2024届中考数学全真模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.关于的方程有实数根,则整数的最大值是()A.6B.7C.8D.9)2.以下各图中,能确定的是(A.B.C.D.3.如图所示的几何体的主视图是()A.B.C.D.4.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为()A.5.46×108B.5.46×109C.5.46×1010D.5.46×10115.方程有两个实数根,则k的取值范围是().A.k≥1B.k≤1C.k>1D.k<16.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC7.轮船沿江从港顺流行驶到港,比从港返回港少用3小时,若船速为26千米/时,水速为2千米/时,求港和港相距多少千米.设港和港相距千米.根据题意,可列出的方程是().A.B.C.D.8.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()A.m<﹣1B.m>1C.m>﹣1D.m<19.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为()B.y=-x2-4x-2C.y=-x2+2x-1D.y=-x2+2x-2A.y=-x2-4x-110.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.12.计算:cos245°-tan30°sin60°=______.13.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=_______.14.分解因式:x3y﹣2x2y+xy=______.15.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长____cm.16.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.三、解答题(共8题,共72分)17.(8分)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.18.(8分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数19.(8分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.20.(8分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.(1)若点的横坐标为,求的面积;(用含的式子表示)(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.21.(8分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.22.(10分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)23.(12分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.(1)求证:△ADE~△ABC;(2)当AC=8,BC=6时,求DE的长.24.如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.求反比例函数和一次函数的表达式;求当时自变量的取值范围.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=;当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,取最大整数,...