电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

《圆锥的体积》教案

2024-06-053

《圆锥的体积》教案(精选16篇)

《圆锥的体积》教案 篇1

  教学目标

  1、知识与技能目标:使学生理解和掌握圆锥体积的计算公式,会运用公式计算圆锥的体积并解决简单的实际问题。

  2、过程与方法:在推导公式过程中,通过小组合作、动手实验的方法,培养学生分析、推理的能力及抽象概括能力。

  3、态度、情感、价值观:在探究公式的过程中,向学生渗透“事物之间是相互联系”的,并通过活动,使学生形成良好的合作探究意识。

  教学重难点

  教学重点:掌握圆锥体积的计算公式。

  教学难点:圆锥体积公式的推导过程。

  教学过程

  一、复习旧知,情景导入

  1、怎样计算圆柱的体积?

  2、一个圆柱的底面积是60平方分米,高

  是15分米,它的体积是多少立方分米?

  3、说一说圆锥有哪些特征?

  (1)顶部:

  (2)底面:

  (3)侧面:

  (4)高:

  4、我们学习了圆柱的体积,还认识了圆锥体。

  同学们看今年又是一个丰收年,农民伯伯可高兴了,你能帮他们计算收了多少粮食吗?也就是求圆锥的体积。圆锥的体积怎样计算呢?它又是怎样推导出来了呢?这节课我们就来研究这个问题。(板书课题:圆锥的体积)

  二、新课

  1、引导学生借助圆柱,探讨圆锥的体积公式。

  ①、猜:圆锥的体积怎样计算呢?大胆猜一下。

  ②、圆锥的体积公式是怎样推导的呢?你有什么想法?小组内讨论。

  2、下面我们就用实验的方法来推导圆椎的体积公式。

  老师提供了实验用具,(每组有1个圆柱和一个圆锥实验杯,一瓶矿泉水)

  (1)引导学生观察用来实验的圆锥、圆柱的特点:圆柱和圆锥都是等底等高(师板书:等底等高)

  (2)学生实验:

  你想怎么做实验?小组内议一议,老师指导倒一下水。请同学们以小组为单位进行实验,在实验中,注意填好实验报告表。(大屏幕出示实验报告表)

  A:你们小组是怎样进行实验的?

  B:通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?

  C:根据这个关系怎样求出圆锥的体积?学生汇报,完成计算公式的`推导。

  3、同学们一定有不少的收获和发现,下面我们来交流一下。

  要求:小组内先交流一下,选三四名同学到前面来汇报。哪个小组同学汇报?哪个小组同学补充?(学生实验并讲解,教师纠正:实验总是不十分准确,有可能差点。)

  一名学生汇报,师板书。

  生:我们把圆锥装满水,倒入这个圆柱体当中,正好倒了3次倒满,得出圆锥的体积等于这个圆柱的体积的1/3,因为圆柱的体积v=sh,所以圆锥的体积v =1/3sh

  (教师板书)圆锥的体积= 1/3 ×底面积×高

  等底等高V=1/3Sh(圆柱的体积怎样求?圆锥的体积怎样求?)

  4、反馈。同学们经过实验,发现了用来实验的圆锥的体积等于圆柱的体积的1/3,老师也想做实验:出示一个非常大的圆柱,一个很小的圆锥,这个圆柱的体积是圆锥体积的3倍吗?(为什么?)

  我们已经推导出了圆锥的体积公式V、S、h表示什么?利用这一关系推导出圆锥的体积:V锥=1/3 Sh)

  圆柱的体积是与它等底等高圆锥体积的3倍。

  圆锥的体积是与它等底等高圆柱体积的1/3 。

  三、巩固应用

  1、如果小麦堆的底面半径为2米,高是1.5米。你能计算出小麦堆的体积吗?

  (一名学生板演并汇报)学生讲解。

  答:这个小麦堆的体积是6.28立方厘米。注意:计算公式上有无漏洞、计算上的指导(约分)单位名称上的指导(立方)。

  2、想一想。议一议。说一说:

  (1)已知圆锥的底面半径r和高h,如何求体积V?

  (2)已知圆锥的底面直径d和高h,如何求体积V?

  (3)已知圆锥的底面周长C和高h,如何求体积V?

  4、考考你:

  有一根底面直径是6厘米,长是15厘米的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?

  四、课堂小结

  这节课你有什么收获?

  板书:圆锥的体积

  圆锥的体积=1/3 ×底面积×高

《圆锥的体积》教案 篇2

  教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;

  教学准备:幻灯片、电脑制图

  教学过程:

  一. 出示课题,引人复习内容;

  1.同学们,今天这节课,我们要进行圆柱体和圆锥体体积的复习;

  板书课题

  2.圆柱体的体积怎么求?

  板书:V圆柱=Sh

  3.圆锥体的体积怎么求?

  板书:V圆锥=1/3 Sh

  4.公式中的 s、h分别表示什么?1/3表示什么?

  小结:求圆柱体和圆锥体的体积,首先要正确应用公式。

  板书:1.正确应用公式

  当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?

  二. 基础练习

  根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)

  计算这些形体的体积:

  (1)S底=1.5 平方米 h=5 米 求V圆柱

  (2)S底=1.5 平方米 h=5 米 求V圆锥

  (3)r=10分米 h=2 米 求V圆柱

  (4)C=6.28米 h=6 米 求V圆锥

  (1)、 (2)两题条件相同,所求不同;

  板书:2. 圆锥体积一定要乘 1/3

  (3)、 (4)两题都要先求出底面积;

  板书:3. 单位名称要统一

  三. 实际应用练习:

  我们还可应用到生活中去解决一些实际问题:(幻灯出示)

  1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?

  默读后问同学:做这道题前有没有准备工作要做?(单位要统一)

  2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?

  默读后问同学:要注意麦堆是什么形状?

  请两位同学板演,其余在本子上自练;

  3.小结:在解这两题时都用到了什么计算?

  四. 提高练习:

  (幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?

  (电脑出示图案)观察水面变化情况,求什么?

  1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?

  2. S可以通过哪个条件求?( r=10厘米)

  3.体积是什么呢?(电脑屏幕逐步演示)

  (1)当钢材放入时水面上升,取出时水面下降,和什么有关?

  (2)放入时水面为什么会上升?

  (3)圆锥体占据了水桶里哪一部分水的体积?

  (4)上升的`水的体积等于什么?

  (5)求圆锥形钢材的体积就是求什么?

  (6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)

  (7)板演,同学自练;

  五. 圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)

  1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)

  2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;

  3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。

  六、总结

  这节课我们复习了什么?

《圆锥的体积》教案 篇3

  教学内容:教材第16~19页圆锥的认识和体积计算、例1。

  教学要求:

  l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

  2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

  3.培养学生初步的空间观念和发展学生的思维能力。

  教具准备:长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。

  教学重点:掌握圆锥的特征。

  教学难点:理解和掌握圆锥体积的计算公式。

  教学过程:

  一、铺垫孕伏:

  1.说出圆柱的体积计算公式。

  2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

  二、自主探究:

  1.认识圆锥。

  我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

  2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

  3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

  (1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

  (2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

  4.学生练习。

  口答练习三第1题。

  5.教学圆锥高的测量方法。(见课本第17页有关内容)

  6.让学生根据上述方法测量自制圆锥的高。

  7.实验操作、推导圆锥体积计算公式。

  (1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)

  (2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的'圆锥才是圆柱体积的。

  (5)启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积=底面积高

  用字母表示:V=Sh

  (6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以?

  8.教学例l

  (1)出示例1

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

  三、巩固练习

  1.做练习三第2题。

  学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

  2.做练习三第4题。学生书面练习,小组交流,集体订正。

  四、课堂小结

  这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

  五、课堂作业

  练习三第3题及数训。

  六、板书:

  圆锥

  圆锥的特征:底面是圆,

  侧面是一个曲面,展开是一个扇形。

  它有一个顶点和一条高。

  圆柱的体积=底面积高

  圆锥的体积=圆柱体积

  圆锥的体积=底面积高V=Sh

《圆锥的体积》教案 篇4

  教材分析:

  圆锥的体积是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的变化,实验教材的编排体现了新的教学理念,使得教材的面貌发生了较大的变化。具体来说有这样几个变化:

  (1)加强了所学知识与现实生活的联系。教材通过列举大量现实生活中具有圆锥体特征实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。当学生认识它们的主要特征后,又让学生从生活中寻找更多的具体如此特征的实物,从而加强所学知识与现实生活的联系,进一步感受几何知识在生活中的广泛应用。

  (2)加强了对图形特征,体积、方法的探索过程。在以往的教学中,这部分内容的编排更侧重于理解和掌握图形的特征、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。实验教材加强了动手实践、自主探索、,让学生经历知识的形成过程,使学生获得较多的有关自主探索和空间观念的训练机会。

  (3)加强了学生在操作中对空间与图形问题的思考。

  学情分析:

  加强了学习方法的引导,鼓励学生独立思考,培养学生的学习能力。教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。如:联系圆柱体公式鼓励学生猜测圆锥体积的计算方法。圆锥体积的教学是按照引出问题联想、猜测实验探究导出公式的思路设计的,在猜测的基础上进行试验和推理,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。

  教学目标:

  1、理解并掌握圆锥的体积的计算方法,能运用公式解决简单的实际问题。

  2、提高学生实际应用的能力。

  3、培养学生利于学习,勇于探索的精神。

  教学重点:圆锥的体积公式的推导过程。

  教学难点:进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。

  教学方法:合作交流自主探究动手操作

  教学准备:同样的圆柱形容器若干,与圆柱等底等高的圆锥,与圆柱等高不等底的圆锥,与圆柱不等高不等底的圆锥,沙子和水

  教学过程:

  一复习导入

  1、提问:援助的体积公式是什么?

  2、出示圆锥的几何图形,学生说出圆锥的底面、侧面和高

  3、导入:同学们,前面我们认识了圆锥,掌握了它的特征,那么,圆锥的体积公式怎样计算呢?这节课我们就来研究这个问题。(板书课题:圆锥的体积)

  二探究新知

  (一)指导探究圆锥的体积计算公式

  1.师:下面我们用实验来探究圆锥体积的计算方法。

  (1)老师给每组同学都准备了圆柱体和圆锥体容器、沙子和水

  (2)实验要求

  做一做:实验时先往圆锥里装满水往圆柱里倒,直到把圆柱里得倒满水为止。

  比一比:实验前比一比援助和圆锥底面和高的关系。

  想一想:通过实验你发现了什么?

  2.学生分组试验,边实验边做记录

  3.学生汇报试验结果

  4.分析数据,做出判断

  观察全班数据,发现了大多数情况下圆柱能装下三个圆锥的沙和水

  5.进一步观察分析,什么情况下圆柱能装下三个圆锥的沙和水

  6.教师强调:只要是等底等高的就存在上面的`现象。

  7.师演示(实验)等底等高的圆柱和圆锥

  板书:V圆柱=3V圆锥或V圆锥=1/3V圆柱

  8.你们能用字幕表示他们的关系么?

  V圆锥=1/3V圆柱=1/3sh

  9.要求圆锥的体积必须知道什么?

  (二)解决实际问题

  导言:同学们对本节课的知识学得很好,下面请同学们解决一下实际问题。

  出示例3:

  (1)指名读题,分析题意

  (2)指两名同学板演,其他齐做

  (3)汇报,说解题思路

  (4)拓展:如果就给出这堆沙子,没有任何数据,说说你解决这个问题的办法。

  (三)质疑

  三巩固练习

  (一)实战训练营:填空

  1、圆锥的底面是一个形,从圆锥的顶点到底面圆心的距离是圆锥的。

  2、圆锥的体积等于和它的圆柱体体积的,所以圆锥体的体积

  3、把一个圆柱削成一个最大的圆锥,这个圆锥的体积是原来圆柱体积的,削去部分体积是圆柱体体积的。

  4、一个圆锥体体积是5.4立方分米,与它等底等高的圆柱的体积是。

  (二)数学门诊部:判断对错

  1、两个圆锥体的底面积相等,他们的体积也相等.

  2、圆锥的体积是圆柱体积的1/3。

  3、圆柱的体积一定大于圆锥的体积。

  4、一个圆锥与一个圆柱等底等体积,那么圆锥的底面积是圆柱的1/3。

  (三)求下列圆锥的体积

  1、底面半径是2cm,高是8cm

  2、底面直径是2dm,高是5.8dm

  3、底面周长是6.28cm,高是7.6cm

  4、高是16dm,底面直径是高的5/8。

  (四)解决实际问题

  一个圆锥形小麦堆,底面周长是31.4m,高是4m,如果每立方米小麦重750kg,那么这堆小麦重多少千克?

  (五)维训练题

  一个圆锥形的小麦堆,量得其占地面积是12平方米,高是1.8米,把这堆小麦装入一个粮仓里,正好站这个粮仓容积的2/15,这个粮仓得的容积是多少立方米?

  四总结这节课你有哪些收获?

  五作业练习四3478题

  板书设计圆锥体的体积

  V圆柱=3V圆锥或V圆锥=1/3V圆柱

  V圆锥=1/3V圆柱=1/3sh

《圆锥的体积》教案 篇5

  目标定位:

  a教学

  1.     使学生理解、掌握圆锥体积计算公式,能运用公式计算圆锥的体积,解决有关的实际问题。

  2.     培养学生观察、操作、推理的能力。

  b教学

  1.     合理、有效、有序地开展小组合作学习,在“实验操作—合作交流—自主探究”的过程中感悟、推理出圆锥体积计算公式,渗透“转化”的数学思想。

  2.     会运用公式计算圆锥的体积,能解决现实生活中类似或相关的问题。

  3.     在活动中使学生的观察、比较、分析、归纳、推理等能力得到发展,合作意识、协作精神得以增强,空间观念得到强化。

  [

  (一)、复习引入、铺垫孕伏

  a教学   提问

  1.     我们已经学过哪些立体图形体积的计算方法?

  2.     我们是用怎样的方法推导圆柱体积计算公式的?

  3.     用字母公式表示圆柱的体积。

  4.     说一说圆锥体的各部分名称及其特征

  板书课题:圆锥的体积

  b教学   创设情境,引发兴趣及思考

  1.     我们认识了圆锥,谁来向大家介绍一下圆锥的各部分及其特征。什么是圆锥的高?生活中你见过哪些物体的形状是圆锥形的?

  2.     如果要把一根底面直径8厘米、高20厘米的圆柱形木料,加工成底面直径是12厘米、高10厘米的圆锥,大家想一想,该怎么办?(多媒体课件演示圆柱形木料旋转切削转化为圆锥的过程,并将圆柱与圆锥重叠,突出“等底等高”)

  师提问:①制成的圆锥的底面积与截取圆柱的底面积有什么关系?制成的圆锥的高与截取圆柱的高有什么关系?②大家可以试着猜想、估计一下,制成的圆锥的体积与截取圆柱的体积有什么关系?

  同学们的猜想、估计对不对呢?我们一起来研究“圆锥的体积”。(板书课题)

  考!

  (二)、实验操作、合作交流、自主探究

  新知、验证(解释)新知

  a教学

  1.     圆锥的体积

  (1)通过实验,使学生认识圆锥的体积和与它等底等高的圆柱体积的关系。

  ①每组都准备好等底等高的圆柱形和圆锥形容器,沙子。②将圆锥形容器盛满沙子,再将沙子倒入和它等底等高的圆柱形容器内,数一数一共倒了几次将圆柱?稳萜鞯孤?"弁ü?笛槿醚伎迹涸沧兜奶寤?退?鹊椎雀叩脑仓?寤溆惺裁垂叵担?

  (2)根据等底等高圆柱和圆锥体积的关系,引导学生得出圆锥体积计算公式:v=1/3sh(板书)

  (3)引导学生思考:圆柱体积计算公式和圆锥体积计算公式有什么相同之处?为什么圆锥的体积计算公式用它的底面积乘以高后还要乘以1/3?

  2.教学例1:一个圆锥形铅锤,底面积是28.26平方厘米,高是5厘米,这个铅锤的体积是多少?

  (1)学生读题后找出已知条件,说出计算公式。

  (2)列式解答

  (3)提问:①求圆锥的体积必须知道哪两个条件?②如果不直接告诉底面积,还可以知道哪些已知条件?怎样进行计算?

  b教学

  1.     出示圆锥:什么是物体的体积?什么是圆锥的体积?(圆锥所占空间的大小叫做圆锥的体积)

  根据以前的知识要求出这个圆锥的体积有什么办法?(把圆锥浸没在装有水的长方体、正方体或圆柱体容器中,看水面上升的高度,计算出上升的那一部分水的体积,就是这个圆锥的体积)(把圆锥看成一个容器,倒入水,再把水倒入量杯中,水的体积就是圆锥的体积)......

  师:这些想法都很好,但有一定的局限性,我们要找一种计算圆锥体积的方法。想一想能不能找到圆锥与以前学过的某种立体图形的体积之间的联系来发现圆锥体积的计算方法。

  2.讨论:(1)我们以前学过哪几种立体图形?拿哪种立体图形来帮助研究圆锥的体积更合适呢?为什么?(因为圆锥有一个圆形底面和一个侧面是曲面,圆柱也有一个圆形的底面和一个侧面也是曲面,用圆柱帮助研究圆锥更方便)(2)出示4个圆柱、1个圆锥。师:这里有4个圆柱,选哪一个来帮助研究圆锥的体积呢?演示比较:圆柱与圆锥分等底等高,等底不等高,等高不等底,既不等底又不等高四种情况。(侧? 赜谝?佳〉鹊椎雀叩脑仓?朐沧兜难芯恳员阌诜⑾止媛桑3)分组提供小组合作实验操作的材料(每组4个圆柱,1个圆锥,水、沙子、大米及实验操作记录表)想一想,利用这些材料,你能设计一个实验来研究圆锥的体积吗?

  第——小组       实验操作记录表                实验记录人:

  实验项目及内容

  圆锥盛满(水或……)向圆柱倒三次后的情况

  实验结论

  等底等高

  等底不等高

  等高不等底

  既不等底也不等高

  3.动手实验:四人一组进行操作,注意观察实验过程(教师讲清实验操作要求、步骤),小组成员详细记录实验情况,全组成员共同讨论、分析,得出本组实验结论。

  4.汇报交流:发现了什么?(让学生在展示台上讲述本组的结论)全体师生共同倾听、质疑。教师适时引导点拨:大家比较一下各组的实验记录,有什么相同点吗?(圆柱体积是和它等底等高圆锥体积的3倍,圆锥体积是和它等底等高圆柱体积的1/3)

  5.质疑回顾:那么等底不等高,等高不等底,既不等底也不等高的圆柱和圆锥的体积还是不是3倍呢?

  根据学生回答教师板书:v锥=1/3v柱

  反馈练习:根据已知圆柱(圆锥)的体积,求出与它等底等高的圆锥(圆柱)的体积。(课件展示)

  师:根据已知圆柱的体积,乘以1/3就可以求出与它等底等高的圆锥的体积,如果圆柱的体积不是直接已知的,你能求出圆锥的体积吗?(v锥=1/3sh)也就是可以利用圆柱体积公式“v柱=sh”得出圆锥体积公式“v锥=1/3sh”。

  6.出示例1:一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

  师:要求圆锥体积可以用v=1/3sh,你会求吗?(学生尝试,师巡视指导)

  汇报:1/31912=76(立厘米) 

  答:这个零件的体积是76立厘米。

  “912”求出的是什么?为什么要“1/3。”

  (三)实践应用、巩固新知

  a教学

  1.  巩固性练习

  根据下面的已知条件求圆锥的体积(口述算式)

  ①底面积0.3平方分米,高0.15分米。

  ②底面半径5厘米,高15厘米。

  ③底面直径8厘米,高10厘米。

  ④底面周长6.28厘米,高20厘米。

  2.  提高性练习

  (1)判断题

  ①圆锥的体积等于圆柱体积的1/3。(   )

  ②圆柱的体积与它等底等高的圆锥体积的3倍。(   )

  ③一个圆锥底面半径扩大2倍,高不变,它的体积也扩大2倍。(   )

  (2)选择题

  ①一个圆柱形铅块可熔铸成(   )个与它等底等高的圆锥形零件。

  a.3         b.2         c.1

  ②把一个圆柱削成一个最大的圆锥体,应削去圆柱体积的(   )。

  a.1/3       b.1/9       c.2/3

  b教学

  1.  认真想一想,对吗?

  ①圆锥的体积是圆柱体积的1/3(   )

  ②圆锥的底面积是3平方厘米,体积是6立方厘米(   )

  ③等底等高的圆柱与圆锥,圆锥体积比圆柱体积小2/3(   )

  2.  选择合适的数据求圆锥的体积(单位:厘米)(图略)

  3.  课件展示:圆锥在生活中应用的实物图(如建筑物、火箭、飞机等),说一说你在生活中所见到的圆锥形物体,并谈谈自己的感受。

  4.  动脑筋解决问题:要使等底等高的圆柱与圆锥体积相等,你有什么办法?(生讲师课件演示)

  ①把圆锥的高(或底面积)扩大3倍,使圆锥的体积扩大3倍,与圆柱的体积相等。

  ②把圆柱的高(或底面积)缩小3倍,使圆柱的体积缩小3倍,与圆锥的体积相等。

《圆锥的体积》教案 篇6

  教学目标:

  1、通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。

  2、能运用公式解答有关的实际问题。

  3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。

  教学过程

  一、创设情境,引发猜想

  1. 电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去“动物超市”购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)

  2. 引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报

  过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积“后,就会弄明白这个问题。

  二、自主探索,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

  出示思考题:

  (1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?

  (2)你们的小组是怎样进行实验的?

  1. 小组实验。

  (1)学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。

  (2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。

  2. 大组交流。

  (1)组织收集信息。

  学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在插式黑板上:

  ①     圆柱的体积正好是圆锥体积的3倍。

  ②     圆柱的体积不是圆锥体积的3倍。

  ③     圆柱的体积正好是圆锥体积的8倍。

  ④     圆柱的体积正好是圆锥体积的5倍。

  ⑤     圆柱的体积是等底等高的圆锥体积的3倍。

  ⑥     圆锥的体积是等底等高的圆柱体积的1/3 。

  ……

  (2)引导整理信息。

  指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)   

  (3)参与处理信息。

  围绕3倍关系的情况讨论:

  ①     请这几个小组同学说出他们是怎样通过实验得出这一结论的?

  ②     哪个小组得出的结论更加科学合理一些?

  圆锥的体积是等底等高的圆柱体积的1/3。

  (突出等底等高,并请他们拿出实验用的器材,自己比划、验证这个结论。)

  ③引导学生自主修正另外两个结论。

  3. 诱导反思。

  (1)为什么有两个小组实验的结果不是3倍关系呢?

  (2)把一个空心的圆锥慢慢按入等底等高且装满水的圆柱形容器里,剩下水的体积是多少?这时和圆柱体积有什么关系?

  4. 推导公式。

  尝试运用信息推导圆锥的体积计算公式。

  (1)这里sh表示什么?为什么要乘1/3?

  (2)要求圆锥体积需要知道哪两个条件?

  5. 问题解决。

  童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高)之后播放狐狸拿着圆锥形雪糕离去的画面。

  三、运用公式,解决问题

  1. 教学例1。一个圆锥形的零件,底面积是19平万厘米,高是12厘米。这个零件的体积是多少?

  2. 学生尝试行算,指名板演,集体订正。

  3. 引导小结:不要漏乘1/3;计算时,能约分时要先约分。

  四、巩固练习,拓展深化(略)

  五、质疑问难,总结升华

  通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式的?

  回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕公平合理,如果狐狸只用一个圆锥形的雪糕和小白兔交换,而不使小白兔吃亏,那么圆锥形的雪糕应该是什么样的?配合用课件演示。

《圆锥的体积》教案 篇7

  教学目标:

  1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。

  2、能运用公式解答有关的实际问题。

  3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。

  教学重点:通过实验的方法,得到计算圆锥体积的公式。

  教学难点:运用圆锥体积公式正确地计算体积。

  教学过程:

  一、创设情境,引发猜想

  在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报

  小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积”后,就会弄明白这个问题。

  二、自主探索,操作实验

  1、出示学习提纲

  (1) 利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?

  (2) 你们小组是怎样进行实验的?

  (3) 你能根据实验结果说出圆锥体的体积公式吗?

  (4) 要求圆锥体积需要知道哪两个条件?

  2、小组合作学习

  3、回报交流

  结论:圆锥的体积是等底等高的圆柱体积的1/3。

  公式:v=1/3sh

  4、问题解决

  小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?

  5、运用公式解决问题

  教学例题1和例题2

  三、巩固练习 

  1、圆锥的底面积是5,高是3,体积是

  2、圆锥的底面积是10,高是9,体积是

  3、求下面各圆锥的体积.

  (1)底面面积是7.8平方米,高是1.8米.

  (2)底面半径是4厘米,高是21厘米.

  (3)底面直径是6分米,高是6分米.

  4、判断对错,并说明理由.

  (1)圆柱的体积相当于圆锥体积的3倍.( )

  (2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( )

  (3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )

  四、拓展延伸

  一个圆锥的底面周长是314厘米,高是9厘米,它的体积是多少立方厘米?

  五、谈谈收获

  六、作业

《圆锥的体积》教案 篇8

  教学内容:

  教科书第20~21页例5及相应的 试一试,练一练和练习四的第1~3题。

  教学目标:

  1.组织学生参与实验,从而推导出圆锥体积的计算公式。

  2.会运用圆锥的体积计算公式计算圆锥的体积。

  3.培养学生观察、比较、分析、综合的能力以及初步的空间观念。

  4.以小组形式参与学习过程,培养学生的合作意识。

  5.渗透转化的数学思想。

  教学重点:

  理解和掌握圆锥体积的计算公式。

  教学难点:

  理解圆柱和圆锥等底等高时体积间的倍数关系。

  教学资源:

  等底等高的圆柱和圆锥容器一套,一些沙或米等。

  教学过程:

  一、联系旧知,设疑激趣,导入新课。

  1.我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具---长方体,正方体圆柱体,然后板书相应的计算公式。)

  2.我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)

  3.(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高。)

  4.大家觉得我们今天要研究的圆锥的体积可能转化为什么图形来研究比较简单呢?能说说自己的理由吗?

  5.它们的体积之间到底有什么关系呢?

  二、实验操作、推导圆锥体积计算公式。

  1.课件出示例5。

  (1)通过演示使学生知道什么叫等底等高。

  (2)让学生猜想:图中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  (用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的'关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。

  2.教师课件演示

  3.学生讨论实验情况,汇报实验结果。

  4.启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积 1/3=底面积高1/3

  用字母表示:V= 1/3Sh

  小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以1/3 ?

  5.教学试一试

  (1)出示题目

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

  三、发散练习、巩固推展

  1.做练一练第1.2题。

  指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3 。

  2.做练习四第1.2题。

  学生做在课本上。之后学生反馈。错的要求说明理由。

  四、小结

  这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

  学生交流

  五、作业

  练习四第3题。

《圆锥的体积》教案 篇9

  教学目标

  1.理解求圆锥体积的计算公式。

  2.会运用公式计算圆锥的体积。

  3.培养同学们初步的空间观念和思维能力;让同学们认识转化的思考方法。

  教学重点

  圆锥体体积计算公式的推导过程。

  教学难点

  正确理解圆锥体积计算公式。

  教学过程

  一、铺垫孕伏

  1.提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。

  2.导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的计算公式

  1.教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的.时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2.学生分组实验。

  学生汇报实验结果:

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。

  4.引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 。

  板书:

  5.推导圆锥的体积公式:用字母表示圆锥的体积公式.板书: 。

  6.思考:要求圆锥的体积,必须知道哪两个条件?

  7.反馈练习

  圆锥的底面积是5,高是3,体积是( )。

  圆锥的底面积是10,高是9,体积是( )。

  (二)算一算

  学生独立计算,集体订正。

  说说解题方法。

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

《圆锥的体积》教案 篇10

  教学内容:

  冀教版小学数学六年级下册第40~42页。

  教学目标:

  1、知识与技能:知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。

  2、过程与方法:通过观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程

  3、情感态度与价值观:积极参加数学活动,了解圆锥和圆柱之间的联系获得探索数学公式的活动经验。

  教学重难点:

  教学重点:了解圆锥的特点,探索并理解圆锥体积的计算公式会用公式计算圆锥的体积。

  教学难点:理解圆锥的高和圆锥体积公式中“Sh”表示的实际意义。

  教具学具:

  1、等底等高的圆柱和圆锥型容器,一些沙子。

  2、多媒体。

  教学流程:

  一、炫我两分钟

  主持学生指名叫学生回答下列问题:

  1.圆柱有几个面?各有什么特点?

  2.怎样计算圆柱的体积?

  学生回答问题。

  【设计意图:通过学生主持炫我两分钟,使学生复习以前学过的相关知识,在轻松愉快的氛围中自然引入本节所学知识。】

  二、创设情境

  1、教师先出示一个圆柱形容器,提问:如果想知道这个容器的容积,怎么办?

  2、出示问题情境:

  最近老师家准备装修,准备了一堆沙子,可是老师遇到了一个难题,大家和我一起解决好吗?(出示沙堆图片),这堆沙子的`底面半径是2米,高是1.5米,工人告诉我要用6立方米沙子,我不知道我准备的这些沙子够不够?怎样计算这堆沙子的体积呢?今天我们就一起来研究一下圆锥体积的计算方法。(板书课题)

  【设计意图:在谈话、创设问题情境的过程中,引起学生的认知冲突,从而产生求知欲望。】

  三、探究新知

  尝试小研究一(课前):了解圆锥的特点

  1.观察圆锥形的物体或图片,它们有哪些特点?

  我的发现:

  2.圆锥由1个( )面和1个( )面2个面组成,圆锥的底面是一个( ) ,圆锥的侧面是一个( ) 。

  3.从圆锥顶点到底面圆心的距离是圆锥的( ),用字母( )表示。

  4.怎样计算圆锥的体积?

  我的猜想:( )

  尝试小研究二(课上):推导圆锥体积的计算公式

  1、引导学生借助圆柱,探讨圆锥的体积公式。

  ①、猜:圆锥的体积怎样计算呢?大胆猜一下。真的是这样吗?

  ②、是怎样推导的呢?你有什么想法?

  下面我们就用实验的方法来推导圆椎的体积公式。

  老师提供了实验用具,拿出来看看:(有圆柱,有圆椎,有沙子,有水)都有吗?

  2、用实验的方法,推导圆锥的体积公式。

  ①、引导学生观察用来实验的圆锥、圆柱的特点。

  其实老师已经准备好了材料,在你们的小组长手中,看一看,比一比,有什么特点吗?(学生发现等底等高)(师板书等底等高)

  ②、学生实验:

  你想怎么实验?(小组可以议一议)(老师指导:倒一下)

  请大家以小组为单位进行实验,在实验中,注意作好记录,思考三个问题:(大屏幕出示这三个问题)(学生读一读思考题)

  A:你们小组是怎样进行实验的?

  B:通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?

  C:根据这个关系怎样求出圆锥的体积?

  (教师指导:为了让实验更准确些,可以用尺子将沙子刮平再倒入)

  ③、学生交流汇报,完成计算公式的推导:

  小组汇报,师板书。

  圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  V=1/3Sh

  【设计意图:通过小组合作,观察、讨论、实验等活动,经历认识圆锥和探索圆锥体积计算公式的过程,知道圆锥的各部分名称,探索并掌握圆锥的体积公式,会用公式计算圆锥的体积。】

  四、解决问题,巩固练习

  (一)运用这个公式解决老师提出的问题,帮助老师解决问题。

  1、 学生试做。

  2、对子同学交流。

  3、小组交流。

  4、展示汇报

  (二)判断: 用手势来回答

  1、圆柱的体积是圆锥体积的3倍。( )

  2、一个圆柱,底面积是12平方分米,高是5分米,它的体积是20立方分米( )

  3、把一个圆柱木块削成一个最大的圆锥,削去的体积是圆柱体积的三分之二。( )

  (三)完成教材第42页“试一试”。

  【设计意图:通过练习,加深对本节课知识的了解,使学生更好的掌握本节课所学知识,并提高学生应用所学知识解决实际问题的能力。】

  五、盘点收获

  通过这节课的学习,你有什么收获?你还想了解哪些知识

  【设计意图:引导学生进行小结,培养学生的探究欲望,有利于知识的积累和自主学习能力的提高。】

  六、拓展延伸

  教材第42页“练一练”第4题。

  【设计意图: 把课上的知识延伸到课外,使学生进一步感受数学于生活并应用于生活。】

  板书设计: 圆锥和圆锥的体积

  圆锥的体积等于和它等底等高的圆柱体积的三分之一。

  圆锥的体积=底面积×高×1/3

  V=1/3Sh

  5 O

《圆锥的体积》教案 篇11

  教学目标

  1、知识目标:使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。、

  2、能力目标:培养学生初步的空间观念,动手操作能力和逻辑思维能力。

  3、情感目标:向学生渗透知识间可以相互转化的辩证唯物主义思想,让学生学习将新知识转化为原有知识的学习方法、

  教学重难点

  教学重点:圆锥的体积计算。

  教学难点:圆锥的体积计算公式的推导。

  教学工具

  ppt课件。

  教学过程

  一、导入新课

  1、出示铅锤

  师:同学们,我们刚认识了圆锥,在学习“圆锥的认识”时认识了这个物体—铅锤。铅锤的外形是圆锥形的,这个铅锤所占空间的大小叫做这个铅锤的体积。

  问:你们有没有办法来测量这个铅锤的体积?

  生:排水法

  师:同学们回答很积极,想到了之前学过的排水法,那咱们对这个方法进行一下评价(学生想到了,并不是所有的圆锥都可以用排水法来测量体积。比如一些庞大的圆锥形物体)

  2、PPT出示圆锥形麦堆和圆锥形的高大的建筑物

  像这种比较大的圆锥形的物体就不适合用排水法测量体积,所以我们需要找到一个解决此类问题的普遍的方法。

  出示课题圆锥的体积

  二、探究新知

  1、回忆

  师:我们学过那些形状的物体的体积的计算方法

  生:长方体正方体圆柱体(学生边说,师边PPT出示图片)

  师:我们在推导圆柱体体积的计算方法的时候是将圆柱体转化长方体或者正方体,转化前后体积不变,你觉得圆锥体和哪种形状的物体有关系呢?

  生:圆柱体

  师:为什么?

  生:圆锥体和圆柱体都有圆形的底面

  2、猜测

  师:既然大家都认为圆锥体和圆柱体由一定的关系,你能大胆猜测一下,圆锥体和圆柱体的体积之间有怎样的关系么?

  (学生猜测,找学生说说猜测的结果)

  3、验证

  师:有了猜测我们就通过实验来验证咱们的猜测(利用学具进行验证,一边实验,一边填写实验记录单)

  (找学生读一读表格中需要填写的内容,并提问,比较圆柱和圆锥的时候,是比较的什么?为学生的.实验操作做一个引领。操作过程6—8分钟)

  4、实验后讨论,并分组汇报实验结果

  (在实验中我设置了两次不同的实验,第一次是等底等高的圆柱和圆锥,第二次是等底不等高的圆柱和圆锥,以便对比得出结论,并不是所有的圆柱和圆锥都符合3倍关系,是有前提条件的)

  5、结论

  通过操作发现:圆锥的体积是同它等底等高的圆柱体积的1/3

  板书:圆柱的体积=底面积×高

  圆锥的体积=底面积×高÷3

  三、运用知识

  1、PPT出示填空和判断

  师:我们学会了求圆锥的体积的计算方法,现在我们利用所学知识来解决生活中的实际问题。

  2、PPT出示例题3

  (学生计算,计算过程中巡视学生解题情况,挑选两种不同的解题方法展示)

  四、拓展

  PPT出示拓展题

  五、总结,谈收获

  通过本节课的学习,你有哪些收获?

《圆锥的体积》教案 篇12

  设计说明

  《数学课程标准》指出:“学生学习应当是一个生动活泼的、主动且富有个性的过程。除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。”根据六年级学生基本都有较强的实验操作能力和空间想象能力这一特点,在教学圆锥体积计算公式的推导时,一改以前教师演示或在教师指令下做试验的方式,采取给学生提供材料和机会,引导学生自主探究的学习方式进行教学。具体表现在以下几个方面:

  1.注意激发学生的求知欲。

  上课伊始,通过精心设计的问题引发学生深入思考,激发学生的学习兴趣。在推导公式的过程中,通过引导学生探讨试验方法,使学生的学习兴趣保持高涨。在解决问题时,通过“扶”而不是“包办代替”,使学生在自主分析问题、解决问题中,真实感受到成功的喜悦。

  2.注意以学生为学习活动的主体。

  教学中,为学生提供动脑、动手的空间,使学生充分参与获取知识的全过程,在分组观察、实验操作、测量等基础上,自主推导出圆锥的体积计算公式。

  3.在学习过程中教给学生科学的探究方法。

  “提出问题——直觉猜想——试验探究——合作交流——试验验证——得出结论——实践运用”是探究学习的一个基本方法,教学中,为学生搭建探究学习的平台,促使学生在这样的过程中掌握知识,获得广泛的数学活动经验和思想方法,发展学生的反思意识和自我评价意识。同时,课堂中,启发学生提问、猜想、动手实践,培养学生解决问题的能力。

  课前准备

  教师准备 PPT课件 铅锤

  学生准备 等底、等高的圆柱形容器和圆锥形容器 沙子或水

  教学过程

  ⊙问题导入

  1.提问激趣。

  师:怎样计算这个铅锤的体积?(出示铅锤)

  预设

  生:可以用“排水法”。把铅锤放入盛水的量杯中(水未溢出),根据水面的先后变化求出铅锤的体积。

  师:怎样求出沙堆的体积?(课件出示例3沙堆图)

  预设

  生1:用“排水法”好像不行。

  生2:把圆锥形沙堆改变形状,堆成正方体,测出它的棱长后计算它的体积。

  生3:把圆锥形沙堆改变形状,堆成长方体,测出它的长、宽、高后计算它的体积。

  生4:把圆锥形沙堆改变形状,堆成圆柱,测出它的底面周长和高,求出它的底面积后计算它的体积。

  2.导入新知。

  师:大家都想到了用“转化”的方法求这堆沙子的体积,但如果我们在计算沙堆体积之前,必须把沙子重新堆放成以前学过的几何形体,这样做又麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。(板书课题:圆锥的体积)

  设计意图:通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。

  ⊙探究新知

  1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?

  (学生大胆猜想,可能与圆柱的体积有关)

  2.探究圆锥的体积要借助一个什么样的圆柱来研究这一问题呢?

  学生经过讨论、交流并说出观点:应该选择一个与这个圆锥等底、等高的圆柱更为合适。

  3.课件出示等底、等高的圆柱和圆锥。

  引导学生想一想它们的体积之间会有什么样的关系。

  4.方法指导。

  议一议:怎样借助等底、等高的圆柱和圆锥来探究圆柱和圆锥的体积之间的关系呢?

  (各组同学准备好等底、等高的圆柱、圆锥形容器)

  预设

  生1:把圆柱形容器装满水,再倒入圆锥形容器中,看可以正好装满几个圆锥形容器。

  生2:把圆锥形容器装满沙子,再倒入圆柱形容器中,看正好几次可以倒满。

  生3:选用一组等底、等高的圆柱模型和圆锥模型,先用“排水法”分别求出圆柱和圆锥的体积,再算出圆柱体积是圆锥体积的几倍,并发现两者之间的'关系。

  5.操作交流。

  (1)分组试验。

  请同学们分组试验。(学生试验,教师巡视指导)

  (2)交流、汇报

  师:谁能汇报一下自己小组的试验结果?

  预设

  生:在圆柱和圆锥的底面积相等、高相等的情况下,将圆锥形容器装满沙子向圆柱形容器里倒,倒了3次,正好倒满。

  师:通过试验,你发现等底、等高的圆柱和圆锥的体积之间有什么关系?

  预设

  生1:圆锥的体积是与它等底、等高的圆柱的体积的。

  生2:圆柱的体积是与它等底、等高的圆锥的体积的3倍。

  6.推导公式。

  师:结合自己的试验结果,说一说计算圆锥的体积时需要知道什么条件。

  预设

  生1:需要知道与圆锥等底、等高的圆柱的体积是多少。

  生2:知道圆锥的底面积和高也可以求出圆锥的体积。

  师:你认为圆锥的体积计算公式是什么?

《圆锥的体积》教案 篇13

  【教学内容】九年义务教育六年制小学数学第十二册第42-43页。

  【教学目的】

  1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

  2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。

  3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

  【教学重点】圆锥的体积计算。

  【教学难点】圆锥的体积公式推导。

  【教学关键】圆锥的体积是与它等底等高的圆柱体积的三分之一。

  【教具准备】简易多媒体、等底等高的圆柱和圆锥空心实物各一个。

  【学具准备】三种空心圆锥和圆柱实物各一个

  【教学过程】

  一、复习

  1、圆柱的体积公式是什么?用字母怎样表示?

  2、求下列各圆柱的体积。(口答)

  (1)底面积是5平方厘米,高是6厘米。

  (2)底面半径4分米,高是10分米。

  (3)底面直径2米,高是3米。

  师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。(板书:圆锥的体积)

  二、新课教学

  师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。

  生:圆锥的底面是圆形的。

  生:从圆锥的顶点到底面圆心的距离是圆锥的高。

  师:你能上来指出这个圆锥的高吗?

  师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

  师:你们看到过哪些物体是圆锥形状的?(略)

  师:对。在生活中有很多圆锥形的物体。

  师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

  出示小黑板:

  1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  2、圆锥的体积怎么算?体积公式是怎样的?

  学生分组做实验,老师巡回指导。

  师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  生:圆柱的体积是圆锥体积的3倍。

  生:圆锥的体积是同它等底等高的圆柱体权的1/3。

  板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

  师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

  生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

  师:说得很好。那么圆锥的体积怎么算呢?

  生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的.体积。

  师:谁能说说圆锥的体积公式。

  生:圆锥的体积公式是V=1/3sh。

  师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。

  师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。

  生:我认为"圆锥的体积V等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

  生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

  师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。

  师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。

  师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。

  例l:一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  (两名学生板演,老师巡视)

  师:这位同学做的对不对?

  生:对!

  师:和他做的一-样的同学请举手。(绝大多数同学举手)

  师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

  生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

  师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即V=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

《圆锥的体积》教案 篇14

  圆锥的体积教学目的:使同学初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展同学的空间观念。

  学具准备:等底等高的圆柱和圆锥8组,比圆柱体积多的沙土

  教学过程:

  一、复习

  1、圆锥有什么特征?

  使同学进一步熟悉圆锥的特征:底面,侧面,高和顶点。

  2、圆柱体积的计算公式是什么?

  指名同学回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。

  二、导人新课

  我们已经学过圆柱体积的计算公式,那么圆锥的体积是不是和圆柱体积有关呢?今天我们就来学习圆锥体积的计算。

  板书课题:圆锥的体积

  三、新课

  1、教学圆锥体积的计算公式。

  师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?

  指名同学叙述圆柱体积计算公式的推导过程,使同学明确求圆柱的体积是通过切拼生长方体来求得的。

  师:那么圆锥的体积该怎样求呢?能不能也通过已学过的'图形来求呢?

  先让同学讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

  教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么一起的地方?”

  然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

  同学分组实验。

  汇报实验结果。先在圆锥里装满沙土,然后倒入圆柱。正好3次可以倒满。

  多指名说

  接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?

  问:把圆柱装满一共倒了几次?

  生:3次。

  师:这说明了什么?

  生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

  多找几名同学说。

  板书:圆锥的体积=1/3 × 圆柱体积

  师:圆柱的体积等于什么?

  生:等于“底面积×高”。

  师:那么,圆锥的体积可以怎样表示呢?

  引导同学想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

  板书:圆锥的体积= 1/3 ×底面积×高

  师:用字母应该怎样表示?

  然后板书字母公式:V=1/3 SH

  师:在这个公式里你觉得哪里最应该注意?

  2、巩固练习

  (1)已知圆柱和圆锥等底等高。圆柱的体积是45立方厘米,圆锥的体积是( )立方厘米。已知圆柱和圆锥等底等高。圆锥的体积是20立方厘米,圆柱的体积是( )立方厘米。

  (2)求下面圆锥的体积。

  已知底面面积是9.6平方米,高是2米。

  底面半径是4厘米,高是3.5厘米。

  底面直径是4厘米,高是6厘米。

  在列式时注意什么?( ) 在计算时,我们怎样计算比较简便?(能约分的要先约分)

  (3)判断:

  (l)圆锥体积是圆柱体积的1/3( )

  (2)圆柱体的体积大于与它等底等高的圆锥体的体积。( )

  (3)假如圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。( )

  (4)圆锥的底面积是3平方厘米,体积是6立方厘米。( )

《圆锥的体积》教案 篇15

  1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。

  (2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。

  (3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。

  (4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。

  2、练习题由浅入深,判断题主要是要加深学生对概念、公式的运用和理解,第2题是书上的一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要考察学生的解决实际问题的.能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。

  3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体积公式的推导,所以把这一环节省去。设计了一组大的等底等高的圆锥和圆柱,让学生明确不管大小,只要等底等高就有3倍这样的关系。

  4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没花多的时间,由于数字教大,部分学生没做完。

《圆锥的体积》教案 篇16

  教学目标:

  1、让学生掌握圆锥体积的计算方法,并能运用公式计算圆锥的体积,解决简单的实际问题。

  2、通过动手操作实验,使学生经历圆锥体积公式的推导过程。

  3、在观察与分析、操作与实验的学习活动中培养学生主动探究问题和空间想象能力。

  教学重点、难点: 掌握圆锥体积公式。

  教具使用:  课件,等底等高长方形、三角形彩纸,等底等高圆锥、圆柱教具,水。

  教学过程:

  一、创设情境,问题导入

  1、师出示长方形、三角形纸各一张。

  提问:等底等高的长方形与三角形面积有什么关系?

  2、提问:旋转长方形,三角形各得到什么图形?

  长方形沿着长旋转一周得到圆柱、直角三角形沿一条直角边旋转一周形成圆锥。

  3、观察。旋转后得到的圆柱和圆锥你有什么发现?(等底等高)

  4、猜想。旋转后得到的圆锥的体积与圆柱的体积又有怎样的关系?

  二、探究新知

  1、实验

  师出示:等底等高的圆柱、圆锥学具、水。

  师:现在我们就要做一个实验,看看圆柱和圆锥的体积有什么关系?

  生动手实验:

  预设方案:①先灌满圆锥,3次倒入圆柱

  ②先灌满圆柱,3次倒入圆锥

  2、生演示汇报

  师板书:圆锥的体积  等于     圆柱体积的  

  质疑:

  追问:是否同意上面的结论。引导学生说出:和它等底等高补充板书。

  3、小结操作过程,课件演示。

  4、推导公式。让生说圆锥的体积用字母如何来表示?

  v锥= sh= πr2h

  三、实际应用

  (1)、一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  生独立完成,师巡视,生板书。

  强调:1912 是与圆锥等底等高圆柱的体积,再乘

  1912=73(立方厘米)

  (2)、在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.5米。每立方米小麦约重750千克,这堆小麦约有多少千克?

  生独立完成,师巡视,生板书

  (4÷2)23.141.5=6.28(立方米)

  6.28750=4710(千克)

  3、填空

  ⑴一个圆锥的底面积是12平方厘米,高是6厘米,它的体积是(    )立方厘米。

  ⑵一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是(    )立方分米。

  ⑶一个圆锥比与它等底等高的圆柱体积少12立方厘米,圆柱体积是(    )立方厘米。

  4、判断:

  ⑴圆柱一定比圆锥体的体积大。(    )

  ⑵圆锥的体积等于和它等底等高的圆柱体积的 。 (  )

  ⑶正方体、长方体、圆锥体的体积都等于底面积高。(   )                         

  ⑷等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。(    )

  四、拓展提高

  有一根底面直径是6厘米,长是15厘米的圆柱体钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?

  法一:(v柱 -v锥)  (6÷2)23.1415- (6÷2)23.1415=282.6(立方厘米)

  法二:(  v柱)    (6÷2)23.1415=282.6(立方厘米)

  五、课堂小结:这节课你有哪些收获?

  板书设计 

  圆锥的体积

  圆锥的体积  等于和它等底等高的圆柱体积的  

  v锥= sh= πr2h

  1912=73(立方厘米)

  (4÷2)23.141.5=6.28(立方米)

  6.28750=4710(千克)

《圆锥的体积》教案

《圆锥的体积》教案(精选16篇)《圆锥的体积》教案 篇1  教学目标  1、知识与技能目标:使学生理解和掌握圆锥体积的计算公式,会运用...
点击下载文档文档为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?