2023-2024学年云南省江川第二中学高三六校第一次联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若存在实数,使成立,则正数的取值范围为()A.B.C.D.2.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A.B.C.D.3.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是()A.B.C.D.4.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为()A.B.C.D.5.已知函数满足,当时,,则()A.或B.或C.或D.或6.已知函数,以下结论正确的个数为()①当时,函数的图象的对称中心为;②当时,函数在上为单调递减函数;③若函数在上不单调,则;④当时,在上的最大值为1.A.1B.2C.3D.4的焦点坐标为,若7.已知双曲线的离心率为,抛物线,则双曲线的渐近线方程为()A.B.C.D.8.设曲线在点处的切线方程为,则()C.3A.1B.2,D.4C.79.已知平面向量,,满足:,则的最小值为()A.5B.6D.810.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限11.若复数满足,其中为虚数单位,是的共轭复数,则复数()A.B.C.4D.512.记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围()A.B.C.D.的解集是二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若关于的不等式,则的值为_____.14.有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有______种;______;15.展开式中的系数为_______________.16.已知命题:,,那么是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.18.(12分)在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线.(Ⅰ)求的方程;(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.19.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.20.(12分)设函数,直线与函数图象相邻两交点的距离为.(Ⅰ)求的值;(Ⅱ)在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.21.(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.22.(10分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的...