2023-2024学年云南省玉溪市第二中学高考仿真模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于;④方程表示的曲线C在第二象限和第四象限其中正确结论的序号是()A.①③B.②④C.①②③D.②③④2.若复数满足,其中为虚数单位,是的共轭复数,则复数()A.B.C.4D.53.已知复数和复数,则为A.B.C.D.4.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆B.长轴在轴上的椭圆C.实轴在轴上的双曲线D.实轴在轴上的双曲线5.()A.B.C.1D.6.已知△ABC中,.点P为BC边上的动点,则的最小值为()A.2B.C.D.7.已知集合,则为()A.[0,2)8.已知函数B.(2,3]C.[2,3]D.(0,2],关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()A.(0,1)∪(1,e)B.C.D.(0,1)9.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为B.复数在复平面内对应的点位于第三象限C.的共轭复数D.10.已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()A.B.C.D.11.函数图像可能是()A.B.C.D.12.已知a,b∈R,,则()A.b=3aB.b=6aC.b=9aD.b=12a,为边的中点.若二、填空题:本题共4小题,每小题5分,共20分。13.如图,在中,已知,垂足为,则的值为__.14.在矩形中,,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_____.15.设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为______.16.已知数列满足,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)若不等式在上恒成立,求实数的取值范围.18.(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.19.(12分)已知函数.当时,求不等式的解集;,,求a的取值范围.20.(12分)已知函数,,若存在实数使成立,求实数的取值范围.21.(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.22.(10分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用基本不等式得,可判断②;和联立解得可判断①③;由图可判断④.【详解】,解得(当且仅当时取等号),则②正确;将和联立,解得,即圆与曲线C相切于点,,,,则①和③都错误;由,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,...