2023-2024学年北京市西城区北京四中高三最后一卷数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.的图像与一条平行于轴的直线有两个交点,其横坐标分别为,B.C.D.2.已知函数则()A.B.C.D.3.已知等差数列的前项和为,若,,则数列的公差为()A.B.C.D.4.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的周长的取值范围是()A.B.C.D.5.为双曲线的左焦点,过点的直线与圆交于、两点,(在、之间)与双曲线在第一象限的交点为,为坐标原点,若,且,则双曲线的离心率为()A.B.C.D.6.已知命题,;命题若,则,下列命题为真命题的是()C.D.A.B.7.已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则△的内切圆的半径为()A.B.C.D.8.已知定义在上的函数的周期为4,当时,,则()A.B.C.D.9.某中学有高中生人,初中生人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为的样本.若样本中高中生恰有人,则的值为()A.B.C.D.10.命题“”的否定为()A.B.C.D.11.设集合(为实数集),,,则()A.B.C.D.12.函数的定义域为,集合,则()A.B.C.D.的面积为,则线段的取值范围是__________.二、填空题:本题共4小题,每小题5分,共20分。13.已知中,点是边的中点,14.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.15.已知等比数列满足,,则该数列的前5项的和为______________.16.成都市某次高三统考,成绩X经统计分析,近似服从正态分布,且,若该市有人参考,则估计成都市该次统考中成绩大于分的人数为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数是自然对数的底数.(1)若,讨论的单调性;(2)若有两个极值点,求的取值范围,并证明:.18.(12分)已知函数.(Ⅰ)求在点处的切线方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有两个实数根,且,证明:.19.(12分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.(1)求椭圆的标准方程;(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.20.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.21.(12分)如图,四棱锥的底面中,为等边三角形,是等腰三角形,且顶角,,平面平面,为中点.(1)求证:平面;(2)若,求二面角的余弦值大小.22.(10分)已知函数,.(1)讨论的单调性;(2)当时,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D中,四棱锥满足条件,故,得到答【解析】如图所示:在边长为的正方体中,四棱锥满足条件.,.案.【详解】.如图所示:在边长为的正方体故,故,故,故选:.【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.2、A【解析】画出函数的图像,函数对称轴方程为,由图可得与关于对称,即得解.【详解】函数的图像如图,对称轴方程为,,又,由图可得与关于对称,故选:A【点睛】本题考查了正弦型函数的对称性,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.3、D【解析】根据等差数列公式直接计算得到答案.【详解】依题意,,故,故,故,故选:D.【点睛】本题考...