2023-2024学年北京昌平临川育人学校高考数学三模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是定义在上的奇函数,且当时,.若,则的解集是()A.B.C.D.2.若变量,满足,则的最大值为()A.3B.2C.D.103.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A.B.C.D.4.已知函数,则函数的图象大致为()A.B.C.D.5.下列函数中既关于直线对称,又在区间上为增函数的是()A..B.,则D.C.D.6.已知全集,集合,()A.B.C.7.将函数的图象分别向右平移个单位长度与向左平移(>0)个单位长度,若所得到的两个图象重合,则的最小值为()A.B.C.D.8.已知函数的一条切线为,则的最小值为()A.B.C.D.9.等差数列中,已知,且,则数列的前项和中最小的是()A.或B.C.D.10.,则与位置关系是()A.平行B.异面C.相交D.平行或异面或相交11.函数,,的部分图象如图所示,则函数表达式为()A.B.C.D.12.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.设,满足约束条件,若的最大值是10,则________.14.已知点是直线上的一点,将直线绕点逆时针方向旋转角,所得直线方程是,若将它继续旋转角,所得直线方程是,则直线的方程是______.,前n项和为,则________.15.已知在等差数列中,,16.已知x,y满足约束条件,则的最小值为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.18.(12分)设函数,(1)当,,求不等式的解集;(2)已知,,的最小值为1,求证:.19.(12分)设(1)当时,求不等式的解集;(2)若,求的取值范围.20.(12分)已知等比数列中,,是和的等差中项.(1)求数列的通项公式;(2)记,求数列的前项和.21.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.22.(10分)为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比例是5:3.(1)填写下面列联表,并根据联表判断是否有的把握认为喜欢阅读中国古典文学与性别有关系?男生女生总计喜欢阅读中国古典文学不喜欢阅读中国古典文学总计(2)为做好文化建设引领,实验组把该校作为试点,和该校的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生...