2023-2024学年四川省宜宾市兴文县高级中学高考数学全真模拟密押卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知四棱锥的底面为矩形,底面,点在线段上,以为直径的圆过点.若,则的面积的最小值为()A.9B.7C.D.2.给出下列四个命题:①若“且”为假命题,则﹑均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题,,则命题,;④设集合,,则“”是“”的必要条件;其中正确命题的个数是()A.B.C.D.3.已知为虚数单位,复数,则其共轭复数()A.B.C.D.4.对于函数,若满足,则称为函数的一对“线性对称点”.若实数与和与为函数的两对“线性对称点”,则的最大值为()A.B.C.D.5.已知,满足,且的最大值是最小值的4倍,则的值是()A.4B.C.D.6.若函数的图象如图所示,则的解析式可能是()A.B.C.D.7.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.B.C.D.8.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是()A.B.C.D.的一部分,9.如图,在矩形中的曲线分别是,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()A.B.C.D.大小关系不能确定10.已知复数为虚数单位),则z的虚部为()A.2B.C.4D.11.已知函数是定义在上的偶函数,且在上单调递增,则()A.B.C.D.12.在三角形中,,,求()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和为,,,,则满足的正整数的所有取值为__________.14.若的展开式中各项系数之和为32,则展开式中x的系数为_____15.下图是一个算法流程图,则输出的S的值是______.16.3张奖券分别标有特等奖、一等奖和二等奖.甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.18.(12分)如图,在矩形中,,,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.(Ⅰ)求证:平面平面;(Ⅱ)求直线与平面所成角的正弦值.19.(12分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.20.(12分)设为等差数列的前项和,且,.(1)求数列的通项公式;(2)若满足不等式的正整数恰有个,求正实数的取值范围.21.(12分)设等差数列满足,.(1)求数列的通项公式;(2)求的前项和及使得最小的的值.22.(10分)在中,角A、B、C的对边分别为a、b、c,且.的外接圆交于点E(异于点A),(1)求角A的大小;,的平分线与交于点D,与(2)若,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,,则.因为平面,平面,所以..又,,所以平面,则易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.2、B【解析】①利用真假表来判断,②考虑内角为,③利用特称命题的否定是全称命题判断,④利用集合间的包含关系判断.时,不是象限角,故②错误;【详解】若“且”为假命题,则﹑中至少有一个是假命题...