电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2023-2024学年四川省成都市高高考数学四模试卷含解析.doc

2023-2024学年四川省成都市高高考数学四模试卷含解析.doc_第1页
1/26
2023-2024学年四川省成都市高高考数学四模试卷含解析.doc_第2页
2/26
2023-2024学年四川省成都市高高考数学四模试卷含解析.doc_第3页
3/26
2023-2024学年四川省成都市高高考数学四模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的值域为()A.B.C.D.2.已知集合A,B=A.,则A∩B=3.已知实数B.满足C.D.,则的最小值为()A.B.C.D.4.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A.B.C.D.5.已知,则()A.2B.C.D.36.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A.B.C.D.7.设函数,则使得成立的的取值范围是().A.B.C.D.8.下列函数中,在定义域上单调递增,且值域为的是()A.B.C.D.9.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2B.5C.D.10.函数的定义域为()A.[,3)∪(3,+∞)B.(-∞,3)∪(3,+∞)C.[,+∞)D.(3,+∞)11.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为()A.1B.C.2D.12.已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.14.若函数恒成立,则实数的取值范围是_____.15.已知向量=(1,2),=(-3,1),则=______.16.若双曲线的离心率为,则双曲线的渐近线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面四边形中,,,.(1)求;面积的最大值.(2)求四边形18.(12分)我们称n()元有序实数组(,,…,)为n维向量,为该向量的范数.已知n维向量,其中,,2,…,n.记范数为奇数的n维向量的个数为,这个向量的范数之和为.(1)求和的值;(2)当n为偶数时,求,(用n表示).为直径的19.(12分)某房地产开发商在其开发的某小区前修建了一个弓形景观湖.如图,该弓形所在的圆是以圆,且米,景观湖边界与平行且它们间的距离为米.开发商计划从点出发建一座景观桥(假定建成的景观桥的桥面与地面和水面均平行),桥面在湖面上的部分记作.设.(1)用表示线段并确定的范围;(2)为了使小区居民可以充分地欣赏湖景,所以要将的长度设计到最长,求的最大值.20.(12分)如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点.(1)证明:面面;(2)当为中点时,求二面角余弦值.21.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值以及此时的直角坐标.22.(10分)在四棱锥的底面是菱形,底面,,分别是的中点,.(Ⅰ)求证:;所成角的正弦值;(Ⅱ)求直线与平面(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点的位置;若不存在,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2023-2024学年四川省成都市高高考数学四模试卷含解析.doc

您可能关注的文档

确认删除?