2023-2024学年四川省泸州市江阳区泸州高中高考适应性考试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数为虚数单位),则z的虚部为()A.2B.C.4D.2.若x,y满足约束条件则z=的取值范围为()A.[]B.[,3]C.[,2]D.[,2]3.()A.B.C.D.4.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A.B.C.D.5.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为A.B.C.D.6.点是单位圆上不同的三点,线段与线段交于圆内一点M,若,则的最小值为()A.B.C.D.7.已知点A.、.若点在函数的图象上,则使得的面积为的点的个数为()8.函数D.B.C.的单调递增区间是()A.B.C.D.9.已知函数满足A.,且,则不等式的解集为()B.D.C.10.已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为()A.B.C.D.11.已知函数,则()A.1B.2C.3D.412.设,,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为.(1)求关于的函数解析式;(2)当为何值时,面积为最小,政府投资最低?14.设为数列的前项和,若,,且,,则________.15.如图是一个算法的伪代码,运行后输出的值为___________.16.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.18.(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.(Ⅰ)证明:;,若为棱上一点,使得直线与平面所成角的大小为30°,(Ⅱ)设,求的值.19.(12分)已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1.(I)求{an}的通项公式;(Ⅱ)若数列{bn}满足:…,求{bn}的前n项和.20.(12分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.21.(12分)已知直线l的极坐标方程为,圆C的参数方程为(为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.22.(10分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);所成角的正弦值.若不是,请说明理由;(2)求直线与平面参考答案一、选择题...