2023-2024学年天津市静海区大邱庄中学高考仿真卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:黄赤交角正切值0.4390.4440.4500.4550.461公元前8000年年代公元元年公元前2000年公元前4000年公元前6000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是()A.公元前2000年到公元元年B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年D.早于公元前6000年2.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥B.若,,则∥C.若∥,,则D.若,b∥,则3.一个几何体的三视图如图所示,则这个几何体的体积为()A.B.C.D.4.直角坐标系中,双曲线()与抛物线相交于、两点,若△是等边三角形,则该双曲线的离心率()A.B.C.D.5.如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,,,,为茎叶图中的学生成绩,则输出的,分别是()A.,B.,C.,D.,6.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则()A.B.C.6D.7.设,命题“存在,使方程有实根”的否定是()A.任意,使方程无实根B.任意,使方程有实根C.存在,使方程无实根D.存在,使方程有实根8.观察下列各式:,,,,,,的图象向左平,,根据以上规律,则()A.B.C.D.9.的图象如图所示,,若将移个单位长度后所得图象与的图象重合,则可取的值的是()A.B.C.D.10.已知定义在上的奇函数满足,且当时,,则(C.2)B.-1D.-2A.111.为虚数单位,则的虚部为()A.B.C.D.12.复数(为虚数单位),则的共轭复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_____.14.函数(为自然对数的底数,),若函数恰有个零点,则实数的取值范围为__________________.15.已知等差数列的前n项和为Sn,若,则____.16.的展开式中,的系数为_______(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角的对边分别是,已知.(1)求角的值;(2)若,,求的面积.18.(12分)有甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪元,送餐员每单制成元;乙公司无底薪,单以内(含单)的部分送餐员每单抽成元,超过单的部分送餐员每单抽成元.现从这两家公司各随机选取一名送餐员,分别记录其天的送餐单数,得到如下频数分布表:送餐单数3839404142甲公司天数101015105乙公司天数101510105(1)从记录甲公司的天送餐单数中随机抽取天,求这天的送餐单数都不小于单的概率;(2)假设同一公司的送餐员一天的送餐单数相同,将频率视为概率,回答下列两个问题:①求乙公司送餐员日工资的分布列和数学期望;②小张打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,小张应选择哪家公司应聘?说明你的理由.19.(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,,,且这六名同学答题正确与否相互之...