2023-2024学年安徽省合肥市重点中学高考数学四模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=()A.﹣2B.﹣1C.2D.42.若非零实数、满足,则下列式子一定正确的是()A.B.C.D.3.已知函数是定义在上的偶函数,当时,,则,,的大小关系为()A.B.C.D.4.过直线上一点作圆的两条切线,,,为切点,当直线,关于直线对称时,()A.B.C.D.5.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()C.外心A.重心B.垂心D.内心6.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为()A.B.C.D.7.如图是二次函数的部分图象,则函数的零点所在的区间是()A.B.C.D.8.若函数有且只有4个不同的零点,则实数的取值范围是()A.B.C.D.9.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为()A.B.C.D.B.310.已知集合,则集合的非空子集个数是()A.211.已知函数C.7D.8()的部分图象如图所示.则()A.B.C.D.12.已知,是两条不重合的直线,是一个平面,则下列命题中正确的是()A.若,,则B.若,,则C.若,,则D.若,,则二、填空题:本题共4小题,每小题5分,共20分。13.已知实数x,y满足,则的最大值为____________.14.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.15.曲线在点处的切线方程为__.16.已知数列的前项满足,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.18.(12分)已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.19.(12分)已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.20.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由.,,,是否设正数等比数列的前项和为,是等差数列,__________,存在正整数,使得成立?21.(12分)如图,在四棱锥中,底面是边长为2的菱形,,平面的中点.平面,点为棱(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.22.(10分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据对称性即可求出答案.【详解】解: 点(5,f(5))与点(﹣1,f(﹣1))满足(5﹣1)÷2=2,故它们关于点(2,1)对称,所以f(5)+f(﹣1)=2,故选:C.【点睛】本题主要考查函数的对称性的应用,属于中档题.2、C【解析】令,则,,将指数式...