2023-2024学年安徽省望江中学高三3月份模拟考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().A.1B.C.2D.32.某几何体的三视图如图所示,则该几何体的体积为()A.B.3C.D.43.定义两种运算“★”与“◆”,对任意,满足下列运算性质:①★,◆;②()★★,◆◆,则(◆2020)(2020★2018)的值为()A.B.C.D.4.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A.B.C.D.5.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限6.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为B.复数在复平面内对应的点位于第三象限C.的共轭复数D.7.中,如果,则的形状是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形8.设,随机变量的分布列是01则当在内增大时,()A.减小,减小B.减小,增大D.增大,增大C.增大,减小,,设,9.设,点,对一切都有不等式成立,则正整数的最小值为()A.B.C.D.10.已知向量,,若,则()A.B.C.D.11.如图,四面体中,面和面都是等腰直角三角形,,,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为()A.B.C.D.12.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,的系数为_______(用数字作答).14.设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为______.15.某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为________.16.已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在角中,角A、B、C的对边分别是a、b、c,若.(1)求角A;.交于,两点,(2)若的面积为,求的周长.18.(12分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:19.(12分)在平面直角坐标系中,直线与抛物线:且当时,.(1)求的值;(2)设线段的中点为,抛物线在点处的切线与的准线交于点,证明:轴.20.(12分)已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.(1)求椭圆方程;,求点的坐标.(2)若直线与椭圆交于另一点,且21.(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.22.(10分)设函数,.(1)解不等式(2)若;对任意的实数恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,,渐近线方程为,求出交点,,,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;2、C【解析】首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所...