2023-2024学年山东省济南市山东师范大学附中高考数学二模试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数满足约束条件,则的最小值是A.B.C.1D.42.函数的图象大致为()A.B.C.D.3.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为()A.B.C.D.4.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多5.设是虚数单位,则()A.B.C.D.6.已知函数,,若对任意的总有恒成立,记的最小值为,则最大值为()A.1B.C.D.7.已知集合A={xx<1},B={x},则A.B.C.D.8.将函数的图象沿轴向左平移个单位长度后,得到函数的图象,则“”是“是偶函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.在直角中,,,,若,则()A.B.C.D.10.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间B.3阶区间C.4阶区间D.5阶区间11.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A.8种B.12种C.16种D.20种12.函数的定义域为()A.或B.或C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为抛物线:的焦点,过作两条互相垂直的直线,,直线与交于、两点,直线与交于、两点,则的最小值为__________.14.在中,内角所对的边分别为,若,的面积为,则_______,_______.15.一个长、宽、高分别为1、2、2的长方体可以在一个圆柱形容器内任意转动,则容器体积的最小值为_________.16.如图,在长方体中,,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.18.(12分)已知函数.(1)解不等式;(2)记函数的最大值为,若,证明:.19.(12分)如图,在四棱锥P—ABCD中,四边形ABCD为平行四边形,BD⊥DC,△PCD为正三角形,平面PCD⊥平面ABCD,E为PC的中点.(1)证明:AP∥平面EBD;,().(2)证明:BE⊥PC.20.(12分)设函数(1)若曲线在点处的切线方程为,求实数a、m的值;(2)若对任意恒成立,求实数a的取值范围;(3)关于x的方程能否有三个不同的实根?证明你的结论.21.(12分)已知函数.(1)当时,求函数的值域;(2)的角的对边分别为且,,求边上的高的最大值.22.(10分)如图,已知椭圆,为其右焦点,直线与椭圆交于两点,点在上,且满足.(点从上到下依次排列)(I)试用表示:(II)证明:原点到直线l的距离为定值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B.2、A的奇偶性和单调性,排除错误选项,从而得出正确选项.【解析】根据函数,所以是偶函数,排除C和D....