电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2023-2024学年山东省滨州市博兴县第一中学高三第一次调研测试数学试卷含解析.doc

2023-2024学年山东省滨州市博兴县第一中学高三第一次调研测试数学试卷含解析.doc_第1页
1/23
2023-2024学年山东省滨州市博兴县第一中学高三第一次调研测试数学试卷含解析.doc_第2页
2/23
2023-2024学年山东省滨州市博兴县第一中学高三第一次调研测试数学试卷含解析.doc_第3页
3/23
2023-2024学年山东省滨州市博兴县第一中学高三第一次调研测试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是()A.B.4C.2D.2.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自朱方的概率为()A.B.C.D.3.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4B.大于4C.小于4D.不确定4.若集合,A.,则下列结论正确的是()B.C.D.5.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是()A.AC⊥BEB.EF平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值6.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数B.,a为任意非零实数C.a、b均为任意实数D.不存在满足条件的实数a,b7.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有()A.14种B.15种C.16种D.18种8.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为()A.B.C.D.9.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为()A.B.C.D.10.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限11.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为()A.2B.C.D.512.已知命题p:“”是“”的充要条件;,,则()A.为真命题B.为真命题C.为真命题D.为假命题二、填空题:本题共4小题,每小题5分,共20分。13.在边长为的菱形中,点在菱形所在的平面内.若,则_____.14.已知命题:,,那么是__________.15.已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则点到抛物线顶点的距离的最小值是__________.16.已知,则展开式中的系数为__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求f(x)的单调递增区间;(2)△ABC内角A、B、C的对边分别为a、b、c,若且A为锐角,a=3,sinC=2sinB,求△ABC的面积.18.(12分)已知分别是的内角的对边,且.(Ⅰ)求.(Ⅱ)若,,求的面积.(Ⅲ)在(Ⅱ)的条件下,求的值.19.(12分)已知函数.(1)讨论的单调性;(2)函数,若对于,使得成立,求的取值范围.20.(12分)已知函数,其中.(1)当时,求在的切线方程;(2)求证:的极大值恒大于0.21.(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.22.(10分)已知椭圆的左焦点为F,上顶点为A,直线AF与直线垂直,交于点Q,垂足为B,且点A是线段BF的中点.(I)求椭圆C的方程;(II)若M,N分别为椭圆C的左,右顶点,P是椭圆C上位于第一象限的一点,直线MP与直线且,求点P的坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2023-2024学年山东省滨州市博兴县第一中学高三第一次调研测试数学试卷含解析.doc

您可能关注的文档

确认删除?