2023-2024学年山东省聊城市高唐一中高三第五次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知若在定义域上恒成立,则的取值范围是()A.B.C.D.2.已知函数在上都存在导函数,对于任意的实数都有,当时,,若,则实数的取值范围是()A.B.C.D.3.已知函数在上可导且恒成立,则下列不等式中一定成立的是()A.、B.、C.、D.、4.“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知复数z满足,则在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限6.已知向量()满足,且与的夹角为,则A.B.C.D.7.若函数有且只有4个不同的零点,则实数的取值范围是()A.B.C.D.8.如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,,则的最大值为()A.B.C.2D.9.是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是()B.A.D.的否定为C.B.D.10.命题:A.C.11.某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为()A.元B.元C.元D.元12.已知等差数列中,,,则数列的前10项和()A.100B.210C.380D.400二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,,则绕所在直线旋转一周所形成的几何体的表面积为______________.14.已知数列的前项和为,且成等差数列,,数列的前项和为,则满足的最小正整数的值为______________.15.的展开式中的系数为__________(用具体数据作答).16.命题“对任意,”的否定是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费.(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;(Ⅲ)在满足(Ⅱ)的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.18.(12分)已知,.(1)解;(2)若,证明:.19.(12分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.20.(12分)在中,角,,的对边分别为,,,已知.(1)若,,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由.21.(12分)在四棱锥的底面是菱形,底面,,分别是的中点,.(Ⅰ)求证:;所成角的正弦值;(Ⅱ)求直线与平面(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点的位置;若不存在,说明理由.22.(10分)设为实数,在极坐标系中,已知圆()与直线相切,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【详解】,先解不等式.①当时,由,得,解得,此时;②当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,,则,此时;当时,,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定...