2023-2024学年山南市高考数学押题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四面体中,为正三角形,边长为6,,,,则四面体的体积为()A.B.C.24D.2.已知正四面体的内切球体积为v,外接球的体积为V,则()A.4B.8C.9D.27,则下列说法中正确的是()3.已知不同直线、与不同平面、,且,A.若,则B.若,则C.若,则D.若,则4.已知集合,则集合的非空子集个数是()A.2B.3C.7D.85.设,满足,则的取值范围是()A.B.C.D.中,M为与的交点,若6.在平行六面体,,则与相等的向量是()A.B.C.D.7.已知a,b∈R,B.b=6a,则()D.b=12aA.b=3aC.b=9a8.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()A.B.C.D.大小关系不能确定9.设等比数列的前项和为,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.设等比数列的前项和为,则“”是“”的()A.充分不必要B.必要不充分C.充要D.既不充分也不必要11.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A.B.C.D.12.函数(且)的图象可能为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.在矩形中,,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_____.14.已知公差大于零的等差数列中,、、依次成等比数列,则的值是__________.15.设满足约束条件,则目标函数的最小值为_.16.的展开式中的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列和等比数列的各项均为整数,它们的前项和分别为,且,.(1)求数列,的通项公式;(2)求;(3)是否存在正整数,使得恰好是数列或中的项?若存在,求出所有满足条件的的值;若不存在,说明理由.18.(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,,且,求BD的长度.19.(12分)设函数.(1)若恒成立,求整数的最大值;(2)求证:.20.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.21.(12分)在△ABC中,分别为三个内角A、B、C的对边,且(1)求角A;且求△ABC的面积.(2)若22.(10分)已知数列的前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【详解】解:在四面体中,为等边三角形,边长为6,,,,,,分别取的中点,连结,则,且,,,,平面,平面,,四面体的体积为:.故答案为:.【点睛】本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.2、D【解析】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,,,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,,在中,由勾股定理得:,,解得,,故选:D【点睛】本题主要考查了多面体的内切球、外接球问题,考查...