2023-2024学年山西省大同一中等高考数学四模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则为()A.B.C.D.2.设抛物线上一点到轴的距离为,到直线的距离为,则的最小值为()A.2B.C.D.33.已知双曲线的右焦点为F,过右顶点A且与x轴垂直的直线交双曲线的一条渐近线于M点,MF的中点恰好在双曲线C上,则C的离心率为()A.B.C.D.4.已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则()A.,b为任意非零实数B.,a为任意非零实数C.a、b均为任意实数D.不存在满足条件的实数a,b5.单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→‥,黑蚂蚁爬行的路线是AB→BB1→‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN).设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是()A.1B.C.D.06.设是等差数列的前n项和,且,则()C.1D.2A.B.7.已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为()A.或B.或C.或D.或8.已知展开式中第三项的二项式系数与第四项的二项式系数相等,,若,则的值为()A.1B.-19.已知三棱柱C.8lD.-81A.()C.D.10.已知函数B.,若对任意的总有恒成立,记,的最小值为,则最大值为()A.1B.C.D.11.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4B.大于4C.小于4D.不确定12.已知正项等比数列的前项和为,则的最小值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在的零点个数为________.14.已知等边三角形的边长为1.,点、分别为线段、上的动点,则取值的集合为__________.15.在边长为的菱形中,点在菱形所在的平面内.若,则_____.16.已知,,,则的最小值是__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,为边上一点,,.(1)求;(2)若,,求.18.(12分)已知数列满足,,,且.(1)求证:数列为等比数列,并求出数列的通项公式;(2)设,求数列的前项和.19.(12分)设函数.(1)解不等式;(2)记的最大值为,若实数、、满足,求证:.20.(12分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.(1)求椭圆的标准方程;同侧的两个动点(异于、),且满足,试讨论直线与(2)设、是椭圆上位于直线直线斜率之间的关系,并求证直线的斜率为定值.21.(12分)如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求证:平面PDE⊥平面PAC;(Ⅱ)求直线PC与平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.22.(10分)武汉有“九省通衢”之称,也称为“江城”,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.(1)为了解“五·一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:现从年龄在内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在内的人数为,求;(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘型游船供游客乘坐观光.由2010到2019这10年间的数据资料显示每年劳动节当日客流量(单位:万人)都大于1...