2023-2024学年广东清远恒大足球学校高考数学二模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A.B.C.D.2.设,则"是""的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若复数满足(是虚数单位),则()A.B.C.D.4.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()D.A.B.3C.25.已知为锐角,且,则等于()A.B.C.D.6.复数(为虚数单位),则等于()A.3B.C.2D.7.执行如图所示的程序框图,输出的结果为()A.B.C.D.8.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为()A.B.C.D.9.若函数有且只有4个不同的零点,则实数的取值范围是()A.B.C.D.10.函数的图象与函数的图象的交点横坐标的和为()A.B.C.D.11.若(),,则()A.0或2B.0C.1或2D.112.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为()A.800B.1000C.1200D.1600二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=_______.14.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.15.如图,的外接圆半径为,为边上一点,且,,则的面积为______.16.若函数在和上均单调递增,则实数的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设,函数,其中为自然对数的底数.(1)设函数.①若,试判断函数与的图像在区间上是否有交点;②求证:对任意的,直线都不是的切线;(2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.中,底面,底面是直角梯形,为侧棱上一点,18.(12分)如图,在四棱锥已知.(Ⅰ)证明:平面平面;(Ⅱ)求二面角的余弦值.19.(12分)已知函数,.(1)讨论的单调性;(2)若存在两个极值点,,证明:.的左、右焦点,直线20.(12分)已知分别是椭圆与交于两点,,且.(1)求的方程;两点,直线的斜率都存(2)已知点是上的任意一点,不经过原点的直线与交于在,且,求的值.21.(12分)已知函数f(x)=x-2-x+1.(Ⅰ)解不等式f(x)>1;(Ⅱ)当x>0时,若函数g(x)(a>0)的最小值恒大于f(x),求实数a的取值范围.22.(10分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】结合已知可知,可求,进而可求,代入,结合,可求,即可判断.【详解】图象上相邻两个极值点,满足,即,,,且,,,,,,当时,为函数的一个极小值点,而.故选:.【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.2、A【解...