2023-2024学年广东省揭阳一中、潮州金中重点中学高三3月份第一次模拟考试数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,满足约束条件,则的取值范围为()A.B.C.D.2.已知函数处的切线方程为),若曲线在点,则实数的取值为(A.-23.若函数B.-1C.1D.2A.有且只有4个不同的零点,则实数的取值范围是()B.C.D.4.一物体作变速直线运动,其曲线如图所示,则该物体在间的运动路程为()m.A.1B.C.D.25.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为()A.B.C.D.6.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为()A.B.C.D.7.设集合,集合,则=()A.8.函数B.C.D.R的对称轴不可能为()A.B.C.D.9.已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是()A.∥B.∥C.∥∥D.10.设P={yy=-x2+1,x∈R},Q={yy=2x,x∈R},则A.PQB.QPC.QD.Q11.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限12.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.134B.67C.182D.108恰有四个不同的解,则实数的取值二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若关于的方程范围是______.中,点在曲线:上,且在第四象限内.已知曲线在点处的切线为14.在平面直角坐标系,则实数的值为__________.15.的二项展开式中,含项的系数为__________.16.给出下列四个命题,其中正确命题的序号是_____.(写出所有正确命题的序号)因为所以不是函数的周期;对于定义在上的函数若则函数不是偶函数;“”是“”成立的充分必要条件;若实数满足则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形.(1)求点,的极坐标;的中点,求的最大值.(2)若点为曲线上的动点,为线段18.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.19.(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.(1)求证:平面;(2)求三棱锥的体积.20.(12分)如图,四边形中,,,,沿对角线将翻折成,使得.(1)证明:;所成角的正弦值.(2)求直线与平面21.(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;(2)若直线经过点,求直线被曲线截得的线段的长.22.(10分)如图,在直三棱柱中,,,D,E分别为AB,BC的中点.(1)证明:平面平面;(2)求点到平面的距离.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.【详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值-5;经过点时,取得最大值5,故.故选:B【点睛】本题考查根据线性规划求范围,属于基础题.2、B【解析】求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,...