2023-2024学年广东省深圳市深圳外国语学校高考数学全真模拟密押卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线﹣y2=1的渐近线方程是()A.x±2y=0B.2x±y=0C.4x±y=0D.x±4y=02.函数,,则“的图象关于轴对称”是“是奇函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列函数中,在区间上为减函数的是()A.B.C.D.4.计算等于()A.B.C.D.5.等比数列中,,则与的等比中项是()A.±4B.4C.D.6.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行B.且C.且D.内的任何直线都与平行7.复数满足为虚数单位),则的虚部为()A.8.正项等差数列B.C.D.A.35的前和为,已知,则=()B.36C.45D.549.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为()A.B.C.D.10.已知实数满足不等式组,则的最小值为()A.B.C.D.11.记单调递增的等比数列的前项和为,若,,则()A.B.C.D.12.设复数满足,在复平面内对应的点为,则不可能为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如图是某几何体的三视图,俯视图中圆的两条半径长为2且互相垂直,则该几何体的体积为________.14.若存在直线l与函数及的图象都相切,则实数的最小值为___________.15.在中,角A,B,C的对边分别为a,b,c,且,则________.16.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。(为参数),以坐标原点为极点,轴正17.(12分)在平面直角坐标系中,直线的参数方程为半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)若,求曲线与的交点坐标;(2)过曲线上任意一点作与夹角为45°的直线,交于点,且的最大值为,求的值.18.(12分)已知,,分别为内角,,的对边,若同时满足下列四个条件中的三个:①;②;③;④.的短轴长为,直线与椭圆相交(1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应的面积.(若所选条件出现多种可能,则按计算的第一种可能计分)19.(12分)在平面直角坐标系中,已知椭圆于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:20.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.21.(12分)在数列中,,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值22.(10分)在平面直角坐标系中,已知椭圆:()的左、右焦点分别为、,且点、与椭圆的上顶点构成边长为2的等边三角形.(1)求椭圆的方程;和直线相交于点、.试判断是否为定(2)已知直线与椭圆相切于点,且分别与直线值,并说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:渐近线方程是﹣y2=1,整理后就得到双曲线的渐近线.解:双曲线其渐近线方程是﹣y2=1整理得x±2y=1.故选A.点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程.属于基础题.2、B【解析】根据函数奇偶性的性质,结合充分条件和必要条件的定义进行判断即可.【...