2023-2024学年广东省珠海市实验中学高三压轴卷数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.()A.B.C.1D.2.△ABC中,AB=3,,AC=4,则△ABC的面积是()A.B.C.3D.3.如图是二次函数的部分图象,则函数的零点所在的区间是()A.B.C.D.4.已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是A.B.C.D.5.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限6.已知三棱柱B.第二象限C.第三象限D.第四象限()A.B.C.D.7.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是A.B.C.D.8.已知函数B.1A.为奇函数,则()C.2D.39.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为()A.8B.16C.D.,,则输出的10.执行如图所示的程序框图,若输入()A.4B.5C.6D.7,则的最大11.在钝角中,角所对的边分别为,为钝角,若值为()A.B.C.1D.12.已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有()①绕着轴上一点旋转;②沿轴正方向平移;③以轴为轴作轴对称;④以轴的某一条垂线为轴作轴对称.A.①③B.③④C.②③D.②④二、填空题:本题共4小题,每小题5分,共20分。13.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.14.已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为__________.15.已知是抛物线的焦点,过作直线与相交于两点,且在第一象限,若,则直线的斜率是_________.16.根据如图的算法,输出的结果是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.,若,,成等比数列.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.18.(12分)设数列是公差不为零的等差数列,其前项和为,(1)求及;(2)设,设数列的前项和,证明:.19.(12分)设都是正数,且,.求证:.20.(12分)已知(1)若,且函数在区间上单调递增,求实数a的范围;(2)若函数有两个极值点,且存在满足,令函数,试判断零点的个数并证明.21.(12分)已知函数.(1)当时,求函数的图象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:.22.(10分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利...