2023-2024学年广东省肇庆市鼎湖中学高考压轴卷数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则,,的大小关系为()A.B.C.D.2.已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为()A.B.C.D.3.对于任意,函数满足,且当时,函数.若,则大小关系是()A.B.C.D.4.若等差数列的前项和为,且,,则的值为().A.21B.63C.13D.845.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种B.36种C.24种D.18种6.已知数列中,,(),则等于()A.B.C.D.27.已知为圆的一条直径,点的坐标满足不等式组则的取值范围为()A.B.C.D.8.设,,则()A.B.C.D.9.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4B.3C.2D.110.已知函数,则下列结论中正确的是①函数的最小正周期为;②函数的图象是轴对称图形;③函数的极大值为;④函数的最小值为.A.①③B.②④C.②③D.②③④11.在直角坐标系中,已知A(1,0),B(4,0),若直线x+my﹣1=0上存在点P,使得PA=2PB,则正实数m的最小值是()A.B.3C.D.12.已知复数满足(是虚数单位),则=()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.现有5人要排成一排照相,其中甲与乙两人不相邻,且甲不站在两端,则不同的排法有____种.(用数字作答)14.已知函数是定义在上的奇函数,且周期为,当时,,则的值为___________________.对于任意的都成立,则在上是减函数”为假命题的一个15.能说明“若函数是________.16.的展开式中项的系数为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(选修4-4:坐标系与参数方程)在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.18.(12分)已知函数.(1)当时,求不等式的解集;(2)若的图象与轴围成的三角形面积大于6,求的取值范围.19.(12分)在中,角所对的边分别为,,的面积.(1)求角C;(2)求周长的取值范围.20.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.21.(12分)在直角坐标系中,曲线的参数方程为(为参数,将曲线经过伸缩变换后得到曲线.在以原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;(2)已知点是曲线上的任意一点,又直线上有两点和,且,又点的极角为,点的极角为锐角.求:①点的极角;②面积的取值范围.22.(10分)已知函数.(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,,且,,若不等式恒成立,试求实数m的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】构造函数,利用导数求得的单调区间,由此判断出的大小关系.【详解】依题意,得,,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.2、D【解析】将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,,是增函数;当时,,是减函数.因此,再令,...