2023-2024学年广西陆川县中学高三二诊模拟考试数学试卷注意事项铅笔作答;第二部分必须用黑1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①直线与直线的斜率乘积为;②轴;③以为直径的圆与抛物线准线相切.其中,所有正确判断的序号是()A.①②③B.①②C.①③D.②③2.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为()A.B.C.D.上任意一点,,若线段的垂直平分线交直线于点,则点3.已知为圆:的轨迹方程为()A.B.C.()D.()4.若直线y=kx+1与圆x2+y2=1相交于P、Q两点,且∠POQ=120°(其中O为坐标原点),则k的值为()A.B.C.或-D.和-5.已知命题,;命题若,则,下列命题为真命题的是()C.D.A.B.6.已知函数为奇函数,且,则()D.3A.2B.5C.1()7.执行下面的程序框图,则输出的值为A.B.C.D.8.将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为()A.B.C.D.9.如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则()A.B.C.D.10.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④B.①③C.①④D.②④11.等比数列中,,则与的等比中项是()A.±4B.4C.D.12.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.复数(其中i为虚数单位)的共轭复数为________.14.函数的定义域为_____________.15.已知,则满足的的取值范围为_______.16.有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有______种;______;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四边形中,,;如图,将沿边折起,连结,使,求证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.18.(12分)如图,三棱锥中,(1)证明:面面;(2)求二面角的余弦值.19.(12分)已知函数(),且只有一个零点..(1)求实数a的值;(2)若,且,证明:20.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点.若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.21.(12分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布.(Ⅰ)从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率;(Ⅱ)记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据(Ⅰ)中的结果,求参数和的值(精确到0.1);(Ⅲ)在(Ⅱ)的条件下,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的,分布列及数学期望(分布列写出计算表达式即可).注:若,则,.的左、右顶点分别为、,焦距为2,直22.(10分)在平面直角坐标系中,已知椭圆线与椭圆交于两点(均异于椭圆的左、右顶点).当直线过椭圆的右焦点且垂直于轴时,四边形的面积为6.(1)求椭圆的标准方程;(2)设直线的斜率分别为.①若,求证:直线过定点;②若直线过椭圆的右焦点,试判断是否为定值,并说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意,可设直线的方...