2023-2024学年松原市重点中学高三(最后冲刺)数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为()A.B.C.D.2.已知函数,且),则“在上是单调函数”是“”的()B.必要不充分条件C.充分必要条件D.既不充分也不必要条件A.充分不必要条件3.已知,则的大小关系为A.B.C.D.4.设,且,则()A.B.C.D.5.已知复数为虚数单位),则z的虚部为()A.2B.C.4D.6.已知角的终边经过点,则的值是A.1或B.或C.1或D.或7.已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,,若,则该双曲线的离心率为().A.B.C.D.8.要得到函数的图像,只需把函数的图像()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.已知集合,,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为()A.B.或C.10.若D.A.411.的二项展开式中的系数是40,则正整数的值为()B.5C.6D.7中,点在边上,平分,若,,,,则()A.B.C.D.12.已知分别为圆与的直径,则的取值范围为()D.A.B.C.二、填空题:本题共4小题,每小题5分,共20分。13.定义在上的奇函数满足,并且当时,则___14.已知集合,其中,.且,则集合中所有元素的和为_________.15.已知某几何体的三视图如图所示,则该几何体外接球的表面积是______.16.数列满足,则,_____.若存在n∈N使得成立,则实数λ的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.18.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.19.(12分)在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图:(1)证明:平面平面(2)求平面与平面所成二面角的大小.20.(12分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均体育锻炼时间在的学生评价为“锻炼达标”.(1)请根据上述表格中的统计数据填写下面列联表:并通过计算判断,是否能在犯错误的概率不超过的前提下认为“锻炼达标”与性别有关?(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出人,进行体育锻炼体会交流.(i)求这人中,男生、女生各有多少人?(ii)从参加体会交流的人中,随机选出人发言,记这人中女生的人数为,求的分布列和数学期望.参考公式:,其中.临界值表:0.100.050.0250.01002.7063.8415.0246.63521.(12分)已知.(1)当时,求不等式的解集;(2)若,,证明:.22.(10分)下表是某公司2018年5~12月份研发费用(百万元)和产品销量(万台)的具体数据:月份5678...