电脑桌面
添加内谋知识网--内谋文库,文书,范文下载到电脑桌面
安装后可以在桌面快捷访问

2023-2024学年江苏省扬州市高考考前提分数学仿真卷含解析.doc

2023-2024学年江苏省扬州市高考考前提分数学仿真卷含解析.doc_第1页
1/21
2023-2024学年江苏省扬州市高考考前提分数学仿真卷含解析.doc_第2页
2/21
2023-2024学年江苏省扬州市高考考前提分数学仿真卷含解析.doc_第3页
3/21
2023-2024学年江苏省扬州市高考考前提分数学仿真卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:,则对,均有;①越小,则国民分配越公平;②设劳伦茨曲线对应的函数为③若某国家某年的劳伦茨曲线近似为,则;④若某国家某年的劳伦茨曲线近似为,则.其中正确的是:B.②③C.①③④D.①②④A.①④2.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为()A.2B.C.D.53.命题“”的否定是()A.B.C.D.4.曲线在点处的切线方程为()A.B.C.D.5.设为虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限6.棱长为2的正方体内有一个内切球,过正方体中两条异面直线,的中点作直线,则该直线被球面截在球内的线段的长为()A.B.C.D.17.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A.B.C.D.8.已知为等腰直角三角形,,,为所在平面内一点,且,则()A.B.C.D.9.的展开式中,含项的系数为()A.B.C.D.10.设是虚数单位,,,则()A.B.C.1D.211.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A.B.C.D.12.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4B.3C.2D.1二、填空题:本题共4小题,每小题5分,共20分。13.在三棱锥中,,三角形为等边三角形,二面角的余弦值为,当三棱锥的体积最大值为时,三棱锥的外接球的表面积为______.14.已知(为虚数单位),则复数________.15.若,则的展开式中含的项的系数为_______.16.已知集合,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为.(1)求的方程;(2)设点为抛物线的焦点,当面积最小时,求直线的方程.18.(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)19.(12分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.20.(12分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)21.(12分)已知矩阵,二阶矩阵满足.(1)求矩阵;(2)求矩阵的特征值.22.(10分)已知,,设函数,.(1)若,求不等式的解集;(2)若函数的最小值为1,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.2、B【解析】利用双曲线的定义和条件中的比例关系可求.【详解】.选B.【点睛】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.3、D【解析】根据全称命题的否定是特称命题,对命题进行改写即可.【详解】全称命题的否定是特称命题,所以命题“,”的否定是:,.故选D.【点睛】本题考查全称命题的否定...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2023-2024学年江苏省扬州市高考考前提分数学仿真卷含解析.doc

您可能关注的文档

确认删除?