2023-2024学年江苏省无锡市江南中学高三下第一次测试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A.B.C.D.2.已知函数()的部分图象如图所示.则()A.B.C.D.3.设等差数列的前n项和为,且,,则()A.9B.12C.D.4.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,aβ,bα,则“ab“是“αβ”的()B.必要不充分条件A.充分不必要条件D.既不充分也不必要条件C.充要条件5.已知函数满足当时,,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是()A.B.C.D.6.已知全集,则集合的子集个数为()A.B.C.D.7.已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是A.B.C.D.8.在A.中,,,,若,则实数()B.D.C.9.双曲线的渐近线方程是()A.B.C.D.10.已知函数,则()A.B.C.D.11.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或B.或C.或D.12.已知数列的前n项和为,,且对于任意,满足,则(的内切)A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆:的左、右焦点分别为,,如图是过且垂直于长轴的弦,则圆方程是________.14.从甲、乙、丙、丁、戊五人中任选两名代表,甲被选中的概率为__________.15.在某批次的某种灯泡中,随机抽取200个样品.并对其寿命进行追踪调查,将结果列成频率分布表如下:寿命(天)频数频率40600.30.4200.1合计2001某人从灯泡样品中随机地购买了个,如果这个灯泡的寿命情况恰好与按四个组分层抽样所得的结果相同,则的最小值为______.地区200家16.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将_________.实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)证明;AC⊥BP;(Ⅱ)求直线AD与平面APC所成角的正弦值.18.(12分)设数列的前n项和满足,,,(1)证明:数列是等差数列,并求其通项公式﹔(2)设,求证:.19.(12分)在中,角所对的边分别为,若,,,且.(1)求角的值;中,,,过顶点,的平面与棱,(2)求的最大值.20.(12分)如图,在正四棱柱分别交于,两点(不在棱的端点处).(1)求证:四边形是平行四边形;(2)求证:与不垂直;(3)若平面与棱所在直线交于点,当四边形为菱形时,求长.21.(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段上,P是的中点,证明:.22.(10分)已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.考点:外接球表面积和椎体的体积.2、C【解析】由图象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.【详解】依题意,,即,解得;因为...