2023-2024学年江苏省盐城市滨海县八滩中学高考数学考前最后一卷预测卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的值等于()A.B.C.D.2.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为()A.B.C.D.3.a为正实数,i为虚数单位,,则a=()A.2B.C.D.1且,使得4.已知函数,,若对,,则实数的取值范围是()A.B.C.D.5.如图,在中,,且,则()A.1B.C.D.6.设,则A.B.C.D.7.函数的定义域为()A.[,3)∪(3,+∞)B.(-∞,3)∪(3,+∞)C.[,+∞)D.(3,+∞)8.定义在R上的偶函数f(x)满足f(x+2)=f(x),当x∈[﹣3,﹣2]时,f(x)=﹣x﹣2,则()A.B.f(sin3)<f(cos3)C.D.f(2020)>f(2019),则()9.如图,在平行四边形中,对角线与交于点,且A.B.C.D.10.已知,函数在区间上恰有个极值点,则正实数的取值范围为()A.B.C.D.11.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是()A.B.C.D.12.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.若且时,不等式恒成立,则实数a的取值范围为________.14.函数在的零点个数为_________.15.在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为,则____.________.16.在中,内角的对边分别是,若,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若,,求实数的值.(2)若,,求正实数的取值范围.18.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.19.(12分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大值,求实数a的取值范围.20.(12分)的内角的对边分别为,且.(1)求;(2)若,点为边的中点,且,求的面积.21.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)判断函数的零点个数.22.(10分)已知椭圆的左、右焦点分别为直线垂直于轴,垂足为,与抛物线交于不同的两点,且过的直线与椭圆交于两点,设且.(1)求点的坐标;(2)求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由余弦公式的二倍角可得,,再由诱导公式有,所以【详解】 ∴由余弦公式的二倍角展开式有又 ∴故选:A【点睛】本题考查了学生对二倍角公式的应用,要求学生熟练掌握三角函数中的诱导公式,属于简单题2、D【解析】先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.之间的大【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据小关系分析问题.3、B【解析】,选B.4、D的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范【解析】先求出围即可.【详解】因为,故,当时,,故在区间上单调递减;当时,,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;,根据题意,对且,使得成立,,只需即可得,解得.故选:D.【点睛】本题考查利用导数研...