2023-2024学年江西省“山江湖”协作体高三冲刺模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数(,且)在区间上的值域为,则()A.B.C.或D.或42.的图象如图所示,,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是()A.B.C.D.3.已知等差数列的前项和为,若,,则数列的公差为()A.B.C.D.4.在中,,,,为的外心,若,,,则()A.B.C.D.5.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为()A.B.C.D.6.若,则()A.B.C.D.7.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A.B.C.D.8.下列函数中,既是奇函数,又是上的单调函数的是()A.B.C.D.9.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限10.已知,,,,.若实数,满足不等式组,则目标函数()B.有最大值,有最小值A.有最大值,无最小值C.无最大值,有最小值D.无最大值,无最小值11.已知数列,,,…,是首项为8,公比为得等比数列,则等于()A.64B.32C.2D.4D.412.在中,角,,的对边分别为,,,若,,,则()A.B.3C.二、填空题:本题共4小题,每小题5分,共20分。13.若满足约束条件,则的最大值为__________.14.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.15.已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数k的取值范围是_______.16.设,分别是定义在上的奇函数和偶函数,且,则_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数其中(Ⅰ)若曲线在点处切线的倾斜角为,求的值;(Ⅱ)已知导函数在区间上存在零点,证明:当时,.18.(12分)某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80元.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.表1:一级滤芯更换频数分布表一级滤芯更换的个数89频数6040图2:二级滤芯更换频数条形图以100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;(2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;(3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.19.(12分)已知矩阵,,若矩阵,求矩阵的逆矩阵.20.(12分)已知椭圆的左、右焦点分别为,离心率为,为椭圆上一动点(异于左右顶点),面积的最大值为.(1)求椭圆的方程;(2)若直线与椭圆相交于点两点,问轴上是否存在点,使得是以为直角顶...