2023-2024学年江西省五市八校高三第一次调研测试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是()A.B.C.D.2.已知函数为奇函数,则()A.B.1C.2D.33.已知方程表示的曲线为的图象,对于函数有如下结论:①在上单调递减;②函数至少存在一个零点;③的最大值为;④若函数和图象关于原点对称,则由方程所确定;则正确命题序号为()A.①③B.②③C.①④D.②④4.的二项展开式中,的系数是()A.70B.-70C.28D.-285.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()A.B.C.D.6.已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,,若,则该双曲线的离心率为().A.B.C.D.7.已知为定义在上的奇函数,且满足当时,,则()A.B.C.D.8.设集合,,则().A.B.C.D.9.已知函数,下列结论不正确的是()A.的图像关于点中心对称B.既是奇函数,又是周期函数C.的图像关于直线对称D.的最大值是10.若不相等的非零实数,,成等差数列,且,,成等比数列,则()A.B.C.2D.11.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是()A.1B.-3C.1或D.-3或12.在中,“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.14.已知x,y满足约束条件,则的最小值为___15.已知三棱锥中,,,则该三棱锥的外接球的表面积是________.16.某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是______.①2至3月份的收入的变化率与11至12月份的收入的变化率相同;,角为钝角,②支出最高值与支出最低值的比是6:1;③第三季度平均收入为50万元;④利润最高的月份是2月份.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在三角形ABC中,角A,B,C的对边分别为a,b,c,若(1)求的值;(2)求边的长.18.(12分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上.求椭圆C的方程;若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾斜角.19.(12分)已知函数(1)若,不等式的解集;(2)若,求实数的取值范围.20.(12分)已知在多面体中,平面平面,且四边形为正方形,且//,,,点,分别是,的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.21.(12分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.22.(10分)在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设出两人到达...