2023-2024学年江西省南康中学高考仿真卷数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的零点为m,若存在实数n使且,则实数a的取值范围是()A.B.C.D.2.设抛物线上一点到轴的距离为,到直线的距离为,则的最小值为()A.2B.C.D.33.若向量,,则与共线的向量可以是()A.B.C.D.4.在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于()A.B.C.D.5.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A.B.C.6D.与点O的位置有关6.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2B.3C.4D.57.二项式A.180的展开式中只有第六项的二项式系数最大,则展开式中的常数项是()8.已知集合B.90C.45D.360,集合,则()A.B.C.D.9.已知当,,时,,则以下判断正确的是A.B.C.D.与的大小关系不确定10.函数(,,)的部分图象如图所示,则的值分别为()A.2,0B.2,C.2,D.2,11.函数A.的图象在点处的切线为,则在轴上的截距为()12.已知函数B.C.D.,若,且,则的取值范围为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.某地区连续5天的最低气温(单位:℃)依次为8,,,0,2,则该组数据的标准差为_______.14.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.15.在数列中,已知,则数列的的前项和为__________.16.已知椭圆,,若椭圆上存在点使得为等边三角形(为原点),则椭圆的离心率为_________.,且,都有三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列,其前项和为,若对于任意,.(1)求证:数列是等差数列,且等差数列的公差为,存在正整数,使得,(2)若数列满足求的最小值.中,平面平面,侧面为平行四边形,侧面18.(12分)如图,在三棱柱为正方形,,,为的中点.(1)求证:平面;(2)求二面角的大小.19.(12分)已知,,为正数,且,证明:(1);(2).20.(12分)某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5年返修台数(台)2122286580658488部分计算结果:,,,,注:年返修率=(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(百万元)关于年(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润生产台数(万台)的线性回归方程(精确到0.01).附:线性回归方程中,,.21.(12分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的?若存斜率为1.(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得在,求出的方程;若不存在,请说明理由.22.(10分)已知圆,定点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线(1)求曲线的方程(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a...