2023-2024学年河北省衡水高考冲刺数学模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合,,则()A.B.C.D.2.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则()A.170B.10C.172D.123.偶函数关于点对称,当时,,求()A.B.C.D.4.给出以下四个命题:①依次首尾相接的四条线段必共面;②过不在同一条直线上的三点,有且只有一个平面;③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;④垂直于同一直线的两条直线必平行.其中正确命题的个数是()A.0B.1C.2D.35.已知定义在R上的函数(m为实数)为偶函数,记,,则a,b,c的大小关系为()A.B.C.D.6.已知抛物线的一个焦点重合,且抛物线的准线被双曲线截得的的焦点与双曲线线段长为,那么该双曲线的离心率为()A.B.C.D.上一点,若点到双曲线的两条渐近线的距离之7.已知点是双曲线积为,则双曲线的离心率为()A.B.C.D.28.在菱形A.中,,,,分别为,的中点,则()B.C.5D.9.在中,为中点,且,若,则()A.B.C.D.10.在原点附近的部分图象大概是()A.B.C.D.11.如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是()A.,B.存在点,使得平面平面C.平面D.三棱锥的体积为定值12.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()B.必要不充分条件C.充要条件D.既不充分也不必要条件A.充分不必要条件__________.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,若,则14.设数列的前n项和为,且,若,则______________.15.设,则______.16.已知抛物线的焦点为,其准线与坐标轴交于点,过的直线与抛物线交于两点,若,则直线的斜率________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.的最小值.18.(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,,满足,求19.(12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称.连接.求证:存在实数,使得成立.20.(12分)已知等比数列是递增数列,且.(1)求数列的通项公式;(2)若,求数列的前项和.21.(12分)如图,在直三棱柱中,,,为的中点,点在线段上,且平面.(1)求证:;(2)求平面与平面所成二面角的正弦值.22.(10分)设数列的前列项和为,已知.(1)求数列的通项公式;(2)求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】计算,再计算交集得到答案.【详解】,,故.故选:.【点睛】本题考查了交集运算,属于简单题.2、D【解析】中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.【详解】由茎叶图知,甲的中位数为,故;乙的平均数为,解得,所以.故选:D.【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.3、D【解析】推导出函数是以为周期的周期函数,由此可得出,代值计算即可.,【详解】由于偶函数的图象关于点对称,则,,则,所以,函数是以为周期的周期函数,由于当时,,则.故选:D.【点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.4、B【解析】用空间四边形对①进行...