2023-2024学年河南省长葛市第一高级中学高三第二次联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.二项式的展开式中,常数项为()A.B.80C.D.160”2.下列说法正确的是(),则A.命题“,”的否定形式是“,B.若平面,,,满足,则C.随机变量服从正态分布(),若D.设是实数,“”是“”的充分不必要条件3.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A.B.1C.D.24.设复数满足,在复平面内对应的点的坐标为则()A.B.C.D.5.已知,且,则的值为()A.B.C.D.6.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10B.9C.8D.77.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=()A.B.C.D.8.已知,,分别为内角,,的对边,,,的面积为,则()A.B.4C.5D.9.如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为()A.B.C.D.10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对在椭圆B.3对C.4对D.5对11.存在点上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A.B.C.D.12.若函数满足,且,则的最小值是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.正方体中,是棱的中点,是侧面上的动点,且平面,记与的轨迹构成的平面为.①,使得;②直线与直线所成角的正切值的取值范围是;③与平面所成锐二面角的正切值为;④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.其中正确命题的序号是________.(写出所有正确命题的序号)14.在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为__________.15.如图,在平面四边形中,,则_________16.甲、乙、丙、丁四名同学报名参加淮南文明城市创建志愿服务活动,服务活动共有“走进社区”、“环境监测”、“爱心义演”、“交通宣传”等四个项目,每人限报其中一项,记事件为“4名同学所报项目各不相同”,事件为“只有甲同学一人报走进社区项目”,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左、右焦点分别为,,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点.(1)求椭圆的方程;(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.18.(12分)已知函数,若的解集为.(1)求的值;(2)若正实数,,满足,求证:.19.(12分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点.(1)证明:点始终在直线上且;(2)求四边形的面积的最小值.20.(12分)在中,内角的对边分别为,且(1)求;(2)若,且面积的最大值为,求周长的取值范围.21.(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.22.(10分)已知的内角的对边分别为,且满足.(1)求角的大小;(2)若的面积为,求的周长的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出二项式的展开式的通式,再令的次数为零,可得结果.【详解】解:二项式展开式的通式为,令,解...