2023-2024学年浙江省乐清市知临中学高三第三次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中,,为的中点,,,则()A.B.C.D.22.设,随机变量的分布列是01则当在内增大时,()A.减小,减小B.减小,增大C.增大,减小D.增大,增大3.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()B.3C.5D.8A.24.已知,函数在区间上恰有个极值点,则正实数的取值范围为()A.B.C.D.5.在三角形中,,,求()A.B.C.D.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.执行如图所示的程序框图,当输出的时,则输入的的值为()A.-2B.-1C.D.8.是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的()B.必要不充分条件A.充分不必要条件D.即不充分不必要条件C.充要条件10.的展开式中有理项有()A.项B.项C.项D.项11.已知,且,则在方向上的投影为()A.B.C.D.12.函数在内有且只有一个零点,则a的值为()A.3B.-3C.2D.-2二、填空题:本题共4小题,每小题5分,共20分。13.某几何体的三视图如图所示(单位:),则该几何体的体积是_____;最长棱的长度是_____.14.曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=____。15.已知是偶函数,则的最小值为___________.16.在正方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)[选修4-4:极坐标与参数方程]在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值(为参数).以坐标原点为极点,轴18.(12分)在直角坐标系中,曲线的参数方程为正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.19.(12分)设函数,,其中,为正实数.(1)若的图象总在函数的图象的下方,求实数的取值范围;(2)设,证明:对任意,都有.20.(12分)如图,在三棱锥中,,,侧面为等边三角形,侧棱.(1)求证:平面平面;(2)求三棱锥外接球的体积.21.(12分)已知函数,其中.(1)当时,求在的切线方程;(2)求证:的极大值恒大于0.22.(10分)已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)当取最小值时,求点的坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】在中,由正弦定理得;进而得,在中,由余弦定理可得.【详解】在中,由正弦定理得,得,又,所以为锐角,所以,,在中,由余弦定理可得,内的单调性即可..故选:D【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.2、C【解析】,,判断其在【详解】解:根据题意在内递增,,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C.【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题.3、D【解析】画出函数的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【详解】解:函数,如图所示当时,,由于关于的不等式恰有1个整数解因此其整数解为3,又∴,,则当时...