2023-2024学年浙江省温州市十五校联合体高考数学必刷试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面向量满足与的夹角为,且,则实数的值为()A.B.C.D.,若2.已知集合,则实数的取值范围为()C.D.A.B.3.已知数列为等比数列,若,且,则()A.B.或C.D.4.在关于的不等式中,“”是“恒成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.二项式展开式中,项的系数为()A.B.C.D.6.函数(且)的图象可能为()A.B.C.D.7.设集合,,若,则的取值范围是()A.B.C.D.8.在中,,,,则在方向上的投影是()A.4B.3D.-3C.-49.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为()A.B.C.D.10.已知、是双曲线的左右焦点,过点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点,若点在以线段为直径的圆外,则双曲线离心率的取值范围是()A.B.C.D.11.已知单位向量,的夹角为,若向量,,且,则()D.6A.2B.2C.412.函数的大致图象是A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.某校高二(4)班统计全班同学中午在食堂用餐时间,有7人用时为6分钟,有14人用时7分钟,有15人用时为8分钟,还有4人用时为10分钟,则高二(4)班全体同学用餐平均用时为____分钟.14.在长方体中,,则异面直线与所成角的余弦值为()A.B.C.D.15.己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是______.16.如图,从一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,,求的通项公式;(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;18.(12分)已知,,分别是三个内角,,的对边,.(1)求;(2)若,,求,.19.(12分)等差数列的前项和为,已知,.(Ⅰ)求数列的通项公式及前项和为;(Ⅱ)设为数列的前项的和,求证:.20.(12分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.时,直线(1)求椭圆的标准方程;(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当过定点.边,的中点,与交于点,,都垂21.(12分)如图,已知,分别是正方形直于平面,且,,是线段上一动点.(1)当平面,求的值;(2)当是中点时,求四面体的体积.22.(10分)在中,角,,所对的边分别是,,,且.(1)求的值;(2)若,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由已知可得,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得由,得即,解得.故选:.【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.2、A【解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【...