2023-2024学年湖北省宜昌市七校教学协作体高三第六次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.的二项展开式中,的系数是()A.70B.-70C.28D.-282.设是虚数单位,,,则()A.B.C.1D.2D.33.设、分别是定义在上的奇函数和偶函数,且,则()A.B.0C.14.已知为虚数单位,若复数,则A.B.C.D.5.将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为()A.B.C.D.6.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为()A.B.C.D.7.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A.B.C.D.18.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()A.10B.32C.40D.809.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则()A.B.C.D.10.已知复数,则()A.B.C.D.11.椭圆是日常生活中常见的图形,在圆柱形的玻璃杯中盛半杯水,将杯体倾斜一个角度,水面的边界即是椭圆.现有一高度为12厘米,底面半径为3厘米的圆柱形玻璃杯,且杯中所盛水的体积恰为该玻璃杯容积的一半(玻璃厚度忽略不计),在玻璃杯倾斜的过程中(杯中的水不能溢出),杯中水面边界所形成的椭圆的离心率的取值范围是()A.B.C.D.12.若,则的值为()A.B.C.D.的最大值是10,则________.二、填空题:本题共4小题,每小题5分,共20分。13.设,满足约束条件,若14.已知函数,曲线与直线相交,若存在相邻两个交点间的距离为,则可取到的最大值为__________.15.在一底面半径和高都是的圆柱形容器中盛满小麦,有一粒带麦锈病的种子混入了其中.现从中随机取出的种子,则取出了带麦锈病种子的概率是_____.16.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)数列满足,且.(1)证明:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.18.(12分)已知数列的前项和和通项满足.(1)求数列的通项公式;(2)已知数列中,,,求数列的前项和.19.(12分)的内角的对边分别为,且.(1)求;(2)若,点为边的中点,且,求的面积.20.(12分)在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)写出的极坐标方程与直线的直角坐标方程;(2)曲线上是否存在不同的两点,(以上两点坐标均为极坐标,,),使点、到的距离都为3?若存在,求的值;若不存在,请说明理由.21.(12分)如图,平面分别是上的动点,且.(1)若平面与平面的交线为,求证:;(2)当平面平面平面所成的二面角的余弦值.时,求平面与22.(10分)已知函数,(1)求函数的单调区间;(2)当时,判断函数,()有几个零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.2、C【解析】由,可得,通过等号左右实部和虚部分...